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Abstract
Kotlarski (1978) proved a result on identification of the distributions of independent random variables X, Y and
Z from the joint distribution of the bivariate random vector (U, V ) where (U, V ) = (max(X, Z), max(Y, Z)).
We extend this result to the case

(U, V ) = (max(X, aZ1, bZ2), max(Y, cZ1, dZ2)

where X, Y, Z1, Z2 are independent or max-independent random variabkes, Z1 and Z2 are identically distributed
and a, b, c, d are known positive constants.

Keywords: Kotlarski’s lemma; Identifiability; Characterization; Max-independent; Independent; Maxima.
MSC 2020: Primary 62E10

1 Introduction

Let X0, X1 and X2 be independent random variables. Define Y1 = max(X0, X1) and Y2 = max(X0, X2).
It is of interest to know whether the joint distribution of (Y1, Y2) determines the individual distributions of
X0, X1 and X2 uniquely. It is known that the random variable Y1 alone can not determine the distributions
of X0 and X1 uniquely unless X0 and X1 are identically distributed random variables (cf. Prakasa Rao
(1992), Section 7.3). Kotlarski (1978) and Klebanov (1973) obtained characterizations for probability
distributions through maxima or minima of independent random variables. Prakasa Rao (2024) discussed
characterizations of probabilty distributions based on maxima or minima of some families of dependent
random variables. We now discuss extension of the result in Kotlarski (1978) leading to characterizations

© 2024 Author(s). (https://www.thegsa.in/).
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of probability distributions through maxima for some classes of independent or max-independent random
variables.

2 Identifiability by maxima for independent random variables
The following result is due to Kotlarski (1978).
Theorem 2.1: (Identifiability by maxima) Suppose X0, X1, X2 are independent random variables. Define
Y1 = max(X0, X1) and Y2 = max(X0, X2). Then the joint distribution of (Y1, Y2) uniquely determines
the distributions of the independent random variables X0, X1 and X2 provided the supports of their
distribution functions are the same.

For a proof of Theorem 2.1, see Kotlarski (1978) (cf. Prakasa Rao (1992), Theorem 2.2.1, p.24).

We will now generalize Theorem 2.1 in analogy with the results of Li and Zheng (2019) for linear
functions of independent random variables.

Theorem 2.2: Let U and V be random variables defined by the relations

U = max(X, aZ1, bZ2); V = max(Y, cZ1, dZ2)

where X, Y, Z1 and Z2 are independent random variables, Z1, Z2 are identically distributed and a, b, c, d

are known positive constants. Further suppose that the distribution functions of X, Y, Z1 have the
same support R = (−∞, ∞). Then, the joint distribution function of (U, V ) uniquely determines the
distributions of X, Y, Z1 if a = b or if a ̸= b but the distribution function of Z1 is differentiable and the
derivative is continuous.

Proof: Let G(t1, t2) be the joint distribution function of (U, V ). Suppose that (N, M, S1, S2) is another
set of independent random variables with S1 and S2 identically distributed with the same support as that
of X and such that the joint distribution of the random vector

(max(N, aS1, bS2), max(M, cS1, dS2))

is the same as that of the random vector (U, V ). Let FX(.) denote the distribution function of the random
variable X. It can be seen that, for any−∞ < t1, t2 < ∞,

G(t1, t2) = P (max(X, aZ1, bZ2) ≤ t1, max((Y, cZ1, dZ2) ≤ t2) (2. 1)

= P (X ≤ t1, aZ1 ≤ t1, bZ2 ≤ t2; Y ≤ t2, cZ1 ≤ t2, dZ2 ≤ t2)

= P (X ≤ t1, Y ≤ t2, Z1 ≤ t1

a
, Z1 ≤ t2

c
, Z2 ≤ t1

b
, Z2 ≤ t2

d
)

= P (X ≤ t1, Y ≤ t2, Z1 ≤ min(t1

a
,
t2

c
), Z2 ≤ min(t1

b
,
t2

d
))

= FX(t1)FY (t2)FZ1(min(t1

a
,
t2

c
))FZ1(min(t1

b
,
t2

d
))
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since X, Y Z1, Z2 are independent random variables and Z1, Z2 are identically distributed. By a similar
argument it follows that

G(t1, t2) = P (max(N, aS1, bS2) ≤ t1, max(M, cS1, dS2) ≤ t2) (2. 2)

= FN(t1)FM(t2)FS1(min(t1

a
,
t2

c
))FS1(min(t1

b
,
t2

d
))

Hence

FX(t1)FY (t2)FZ1(min(t1

a
,
t2

c
))FZ1(min(t1

b
,
t2

d
)) (2. 3)

= FN(t1)FM(t2)FS1(min(t1

a
,
t2

c
))FS1(min(t1

b
,
t2

d
))

for all −∞ < t1, t2 < ∞. Then, for all t ∈ R, define

η1(t) = FX(t)
FM(t) , η2(t) = FY (t)

FN(t) and η3(t) = FZ1(t)
FS1(t) .

Equation (2.3) implies that

η1(t1)η2(t2)η3(min(t1

a
,
t2

c
))η3(min(t1

b
,
t2

d
)) = 1, t1, t2 ∈ R. (2. 4)

Let t1 → ∞ in equation (2.4). From the properties of the distribution functions, it follows that

η2(t2)η3(
t2

c
)η3(

t2

d
) = 1, t2 ∈ R.

Hence
η2(t2) = [η3(

t2

c
)η3(

t2

d
)]−1, t2 ∈ R. (2. 5)

Let t2 → ∞ in equation (2.4). From the properties of the distribution functions again, it follows that

η1(t1)η3(
t1

a
)η3(

t1

b
) = 1, t1 ∈ R

which implies that
η1(t1) = [η3(

t1

a
)η3(

t1

b
)]−1, t1 ∈ R. (2. 6)

Combining the equations (2.4)-(2.6), it follows that

η3(min(t1

a
,
t2

c
))η3(min(t1

b
,
t2

d
)) = η3(

t1

a
)η3(

t1

b
)η3(

t2

c
)η3(

t2

d
), t1, t2 ∈ R. (2. 7)

Fix t1 ∈ R and let t2 → ∞. Then the expression on the left side of equation (2.7) tends to 1 and the
expression on the right side tends to

η3(
t1

a
)η3(

t1

b
)

by the properties of the distribution functions. Hence

η3(
t1

a
)η3(

t1

b
) = 1, t1 ∈ R. (2. 8)

3
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This in turn implies that
η1(t1) = 1, t1 ∈ R (2. 9)

from (2.6). A similar analysis shows that

η2(t2) = 1, t2 ∈ R (2. 10)

by fixing t2 ∈ R and letting t1 → ∞. In particular, it follows that

FX(t) = FM(t), t ∈ R

and
FY (t) = FN(t), t ∈ R.

Furthermore, equation (2.8) implies that

log η3(
t

a
) + log η3(

t

b
) = 0, t ∈ R. (2. 11)

Let ζ(t) = log η3(t), t ∈ R. Equation (2.11) implies that

ζ( t

a
) + ζ( t

b
) = 0, t ∈ D

or equivalently
ζ(u) = −ζ(λu), u ∈ R

where λ = a
b
. Suppose that λ = 1. Then it follows that ζ(u) = 0, u ∈ R which in turn implies that

η3(t) = 1, t ∈ R and hence FZ1(t) = FS1(t), t ∈ R. If λ ̸= 1, applying Lemma 2 in Li and Zheng (2019),
it follows that ζ(u) = 0, u ∈ R under the additional condition of differentiability of the function ζ(u) and
continuity of its derivative which implies that FZ1(t) = FS1(t), t ∈ R.

This completes the proof of Theorem 2.2.

We will now investigate the same problem when the constants a > 0, b < 0, c > 0 and d < 0.

Theorem 2.3: Let U and V be random variables defined by the relations

U = max(X, aZ1, bZ2); V = max(Y, cZ1, dZ2)

where X, Y, Z1 and Z2 are independent random variables, Z1, Z2 are identically distributed and a > 0, b <

0, c > 0, d < 0, are known constants. Further suppose that the distribution functions of X, Y, Z1 have
the same support R = (−∞, ∞). Then, the joint distribution function of (U, V ) are connected by the
distributions of X, Y, Z1 and the distributions of M, N, S1 by the equations through the equations (2.12)
and (2.13) given below:

FX(t) = FM(t)
FS1( t

a
)(1 − FS1( t

b
))

FZ1( t
a
)(1 − FZ1( t

b
)) (2. 12)

4
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and
FY (t) = FN(t)

FS1( t
c
)(1 − FS1( t

d
))

FZ1( t
c
)(1 − FZ1( t

d
)) . (2. 13)

Proof: We follow the same notation as given in the proof of Theorem 2.2. It easy to see that that the
joint distribution of The bivariate random vector (U, V ) is given by

G(t1, t2) = P (X ≤ t1, Y ≤ t2, Z1 ≤ t1

a
, Z1 ≤ t2

c
, Z2 ≥ t1

b
, Z2 ≥ t2

d
)

= P (X ≤ t1, Y ≤ t2, Z1 ≤ min(t1

a
,
t2

c
), Z2 ≥ max(t1

b
,
t2

d
))

= FX(t1)FY (t2)FZ1(min(t1

a
,
t2

c
))(1 − FZ1(max(t1

b
,
t2

d
))

= FM(t1)FN(t2)FS1(min(t1

a
,
t2

c
))(1 − FS1(max(t1

b
,
t2

d
))

for all t1, t2 ∈ R. Define η1(t), η2(t) and η3(t) as defined in the proof of Theorem 2.2. Then it follows
that

η1(t1)η2(t2)η3(min(t1

a
,
t2

c
))

(1 − FZ1(max( t1
b
, t2

d
))

(1 − FS1(max( t1
b
, t2

d
)) = 1, t1, t2 ∈ R. (2. 14)

Let t2 → ∞. Then, it follows that,

η1(t1)η3(
t1

a
)
(1 − FZ1( t1

b
))

(1 − FS1( t1
b
)) = 1 (2. 15)

observing that t2
d

→ −∞ as t2 → ∞. Letting t1 → ∞, it follows that

η2(t2)η3(
t2

c
)
(1 − FZ1( t2

d
))

(1 − FS1( t2
d

)) = 1. (2. 16)

These equations in turn show that

FX(t) = FM(t)
FS1( t

a
)(1 − FS1( t

b
))

FZ1( t
a
)(1 − FZ1( t

b
)) (2. 17)

and
FY (t) = FN(t)

FS1( t
c
)(1 − FS1( t

d
))

FZ1( t
c
)(1 − FZ1( t

d
)) . (2. 18)

Remarks: Theorem 2.2 will continue to hold if the support R is replaced by R+ = [0, ∞) and Theorem
2.2 is not a consequence of Theorem 2.1. Suppose X, Y, Z1 and Z2 are independent random variables
and a, b, c, d are positive constants.Note that, if

U = max(X, aZ1, bZ2) = max(aZ1, max(X, bZ2)),

then
U

a
= max(Z1, max(X

a
,
bZ2

a
)).

5
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Similarly, if
V = max(Y, cZ1, dZ2) = max(cZ1, max(Y, dZ2)),

then
V

c
= max(Z1, max(Y

c
,
dZ2

c
)).

Observe that the random variables Z1, max(X
a

, bZ2
a

), and max(Y
c
, dZ2

c
) are not independent and Theorem

2.1 is not applicable. In particular, the joint distribution of (U/a, V/c) may not determine the distributions
of X, Z1 and Z2.

3 Identifiability by maxima for max-independent random variables
Definition: A finite collection of random variables X1, . . . , Xn is said to be max-independent if there
exists a function β(x1, . . . , xn) such that

F (x1, . . . , xn) = F1(x1) . . . Fn(xn)β(x1, . . . , xn), xi ∈ R, 1 ≤ i ≤ n

where F (x1, . . . , xn) is the joint distribution of (X1, . . . , Xn) , Fi(x) is the distribution function of Xi for
1 ≤ i ≤ n and β(x1, . . . , xn) is a function taking values in the interval (0, 1] such that β(x1, . . . , xn) → 1
if xi → ∞ for some i, 1 ≤ i ≤ n (cf. Prakasa Rao (2023)). The function β(x1, . . . , xn) is called the
generator of the random sequence X1, . . . , Xn.

Examples of sequence of max-independent random variables which are not independent are given in
Prakasa Rao (2023). We will now generalize Theorem 2.2 to max-independent random variables.

Theorem 3.1: Let X, Y, Z1 and Z2 be max-independent random variables with generator β(x1, x2, x3, x4).
Define the random variables U and V by the relations

U = max(X, aZ1, bZ2); V = max(Y, cZ1, dZ2)

where Z1, Z2 are identically distributed and a, b, c, d are known positive constants. Further suppose that
the distribution functions of X, Y, Z1 have the same support R = (−∞, ∞).. Then, the joint distribution
function of (U, V ) uniquely determines the distributions of X, Y, Z1 if a = b or if a ̸= b but the distribution
function of Z1 is differentiable and the derivative is continuous.

Proof: Let G(t1, t2) be the joint distribution function of (U, V ). Suppose that (N, S1, S2) is another set
of max-independent random variables with the generator β(x1, x2, x3, x4) such that the joint distribution
of the random vector

(max(N, aS1, bS2), max(M, cS1, dS2))

6
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is the same as that of the random vector (U, V ). Let FX(.) denote the distribution function of the random
variable X. It can be seen that, for any−∞ < t1, t2 < ∞,

(3. 1)

G(t1, t2) = P (max(X, aZ1, bZ2) ≤ t1, max((Y, cZ1, dZ2) ≤ t2)

= P (X ≤ t1, aZ1 ≤ t1, bZ2 ≤ t2; Y ≤ t2, cZ1 ≤ t2, dZ2 ≤ t2)

= P (X ≤ t1, Y ≤ t2, Z1 ≤ t1

a
, Z1 ≤ t2

c
, Z2 ≤ t1

b
, Z2 ≤ t2

d
)

= P (X ≤ t1, Y ≤ t2, Z1 ≤ min(t1

a
,
t2

c
), Z2 ≤ min(t1

b
,
t2

d
))

= FX(t1)FY (t2)FZ1(min(t1

a
,
t2

c
))FZ1(min(t1

b
,
t2

d
))β(t1, t2, min(t1

a
,
t2

c
), min(t1

b
,
t2

d
))

since X, Y Z1, Z2 are max-independent random variables,Z1, Z2 are identically distributed with generator
β(x1, x2, x3, x4). By a similar argument it follows that

(3. 2)

G(t1, t2) = P (max(N, aS1, bS2) ≤ t1, max((M, cS1, dS2) ≤ t2))

= FN(t1)FM(t2)FS1(min(t1

a
,
t2

c
))FS1(min(t1

b
,
t2

d
))β(t1, t2, min(t1

a
,
t2

c
), min(t1

b
,
t2

d
)).

Hence

FX(t1)FY (t2)FZ1(min(t1

a
,
t2

c
))FZ1(min(t1

b
,
t2

d
))β(t1, t2, min(t1

a
,
t2

c
), min(t1

b
,
t2

d
) (3. 3)

= FN(t1)FM(t2)FS1(min(t1

a
,
t2

c
))FS1(min(t1

b
,
t2

d
))β(t1, t2, min(t1

a
,
t2

c
), min(t1

b
,
t2

d
)

for all −∞ < t1, t2 < ∞. Then, for all t ∈ R,, define

η1(t) = FX(t)
FM(t) , η2(t) = FY (t)

FN(t) , and η3(t) = FZ1(t)
FS1(t) .

Equation (3.3) implies that

η1(t1)η2(t2)η3(min(t1

a
,
t2

c
))η3(min(t1

b
,
t2

d
)) = 1, t1, t2 ∈ R. (3. 4)

Let t1 → ∞ in equation (3.4). From the properties of the distribution functions, it follows that

η2(t2)η3(
t2

c
)η3(

t2

d
) = 1, t2 ∈ R.

Hence
η2(t2) = [η3(

t2

c
)η3(

t2

d
)]−1, t2 ∈ R. (3. 5)

Let t2 → ∞ in equation (3.4). From the properties of the distribution functions again, it follows that

η1(t1)η3(
t1

a
)η3(

t1

b
) = 1, t1 ∈ R

7
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which implies that
η1(t1) = [η3(

t1

a
)η3(

t1

b
)]−1, t2 ∈ R. (3. 6)

Combining the equations (3.4)-(3.6), it follows that

η3(min(t1

a
,
t2

c
))η3(min(t1

b
,
t2

d
)) = η3(

t1

a
)η3(

t1

b
)η3(

t2

c
)η3(

t2

d
), t1, t2 ∈ R. (3. 7)

Fix t1 ∈ R and let t2 → ∞. Then the expression on the left side of equation (3.6) tends to 1 and the
expression on the right side tends to

η3(
t1

a
)η3(

t1

b
).

Hence
η3(

t1

a
)η3(

t1

b
) = 1, t1 ∈ R. (3. 8)

This in turn implies that
η1(t1) = 1, t1 ∈ R. (3. 9)

A similar analysis shows that
η2(t2) = 1, t2 ∈ R (3. 10)

by fixing t2 ∈ R and letting t1 → ∞. In particular, it follows that

FX(t) = FM(t), t ∈ R

and
FY (t) = FN(t), t ∈ R.

Furthermore, equation (3.8) implies that

log η3(
t

a
) + log η3(

t

b
) = 1, t ∈ R. (3. 11)

Let ζ(t) = log η3(t), t ∈ R. Equation (3.11) implies that

ζ( t

a
) + ζ(t)( t

b
) = 0, t ∈ R

or equivalently
ζ(u) = −ζ(λu), u ∈ R

where λ = a
b
. Suppose that λ = 1. Then it follows that ζ(u) = 0, u ∈ R which in turn implies that

η3(t) = 1, t ∈ R and hence FZ1(t) = FS1(t), t ∈ R. If λ ̸= 1, applying Lemma 2 in Li and Zheng (2019),
it follows that ζ(u) = 0, u ∈ D∗ under the additional condition of differentiability of the function ζ(u)
and continuity of its derivative which implies that FZ1(t) = FS1(t), t ∈ R.

This completes the proof of Theorem 3.1.
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Remarks: Theorem 3.1 will continue to hold if the support R is replaced by the support [0, ∞).
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Abstract
There has been a steady flow of research publications in the narrow area of ‘optimal covariate designs’. The
context deals with quantitative non-stochastic covariates - each lying in the closed interval [−1, 1]. Starting
with an entirely homogeneous set-up of experimental units, the literature extends into many directions - covering
differential treatment effects, block effects, row-and column-effects and so on. However, the central problem has
been - most efficient estimation of covariate effects parameters - in the presence of so many nuisance parameters.
It is no wonder that Springer Monograph [Das-2015] is available with summarization of results on existence and
constructional aspects of such optimal covariate designs in diverse experimental settings.

An entirely new set-up has surfaced up in the context of ‘neighboring designs’ while studying such optimality
issues. In this paper we will focus on that and primarily we will supplement some results in [Sapam-2021] while
dealing with RBDs with neighbor effects.
Keywords: Designs with Neighbor-Effects, RBDs, LSDs, Optimal designs for covariates effects.

1 Introduction
The key references to this paper are (i) Springer Monograph on Optimal Covariate Designs [Das-2015]
and (ii) a recent article [Sapam-2021]. There are a good number of papers in this fascinating topic.
As far as we can trace it out, [Lopes-1982a], [Lopes-1982b] discussed about optimal covariate designs
in CRD set-ups. Twenty years later, [Das-2003] introduced a fundamental resourceful matrix W in the
CRD set-up that simplified the whole approach so much so that the formulations and solutions in the
cases of RBDs and LSDs were nicely visualized. Subsequently, there was a continuous flow of research
articles in this direction. Quite appropriately, a research monograph was in sight and it was duly published
[Das-2015].

The article by [Sapam-2021] focuses on such covariate designs when Neighbor-Effects are
incorporated in the models. While discussing generalizations of results in the presence of Row-Neighbor
and Column-Neighbor Effects, the authors hinted at a question in “Remark 3: [It is tempting to conjecture
that for any given layout of an RBD, there is at least one X-matrix available satisfying all the properties
stipulated]". That is our starting point. We focus our attention on that query.

It might be appropriate to briefly discuss the notion of neighbor designs. Block designs with one-
sided, two-sided and four-sided neighbor effects have been studied in considerable details in the literature.
Some of the relevant references are [Varghese-2014], [Azais-1993], [Jaggi-2003], [Jaggi-2018],
[Sapam-2019a], [Sapam-2019b]. As desired by one referee, we describe the concept of neighbor
designs with reference to an RBD with b = 4, v = 5 shown below:

© 2024 Author(s). (https://www.thegsa.in/).
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4 5 1 2 3
5 1 2 3 4 5 1
1 2 3 4 5 1 2
2 3 4 5 1 2 3
3 4 5 1 2 3 4

1 2 3 4 5

Table 1: RBD (b=4, v=5)

The blocks (rows) are circular that is, the border plot of treatment 1 at the left end is neighbor of the
treatment 5 at the right end of the block 1. In the same manner, the treatment 1 at the top left-corner
is neighbor of treatment 4 at the bottom- left corner of Column 1, that means circular column-wise. In
the experimental situations where a treatment has neighbor effects from its left and right adjacent plots
it is known as two- sided neighbor effects whereas if a treatment has neighbor effects from the adjacent
left -and -right plot as well as from the adjacent top and bottom plots, it is said to be four-sided neighbor
effects. In the above RBD in Table 1, every adjacent pair of distinct treatments has the concurrence µ,
say, equal to 4. It defines cirular balanced under the assumption of circular blocks rows. [Bailey-2003]
gives the details of circular neighbor balanced designs under different block sizes. We will deal with such
neighbor-effects designs in this study of optimal estimation of covariate effects.

Not to obscure the essential steps of reasoning and, moreover, to ease out the readers’ understanding
about the subject matter, we will discuss some basics in optimal covariates’ designs.

(1) Basically, we are dealing with multivariate linear regression models involving, say, k regressors.
Specifically, in its simple form, the model envisaged is :

yij = µ +
k∑

j=1
βjxij + eij, i = 1, 2, ..., n. (1)

We are thus referring to a basic model with k covariates and the beta-coefficients need to be estimated
most efficiently, assuming that [−1 ≤ xij ≤ 1].

(2) On this model, we gradually impose treatment variations [CRD Model], block [row] variations
[RBD/BIBD etc], row-column [LSD/MOLS] variations and so on.

For the simplest model in (1), regression parameters are most efficiently estimated when the elements
(xij)′s satisfy the conditions of mutual orthogonality involving the elements 1 and −1. [Lopes-1982a],
[Lopes-1982b] studied the nature of optimal covariate designs under CRD set-up. It is in this context
that [Das-2003] introduced the W -matrix which greatly simplified the understanding of the optimal
designs for most of the design set-ups. In a CRD model with n = vr involving v treatments, each with r

replications, the matrix W refers to a matrix of order v × r whose elements are x′
ijs.

The study of optimal covariate designs rests on extensive uses of Hadamard Matrices and hence the
orders of the RBDs and LSDs are conveniently chosen as multiples of 4. Also optimality rests on the
ability to construct W -matrices using only the elements +1, −1 and satisfying a series of conditions listed
below. For an expository review on Hadamard Matrices, we refer to [Hedayat-1978].

(i) each row sum of w-values (as block totals) is 0;
(ii) each treatment position sum of w- values is 0;
(iii) sum of w- values in the positions of all the left-neighbors of
a given treatment is 0 and that holds for each treatment;
(iv) sum of w- values in the positions of all the right-neighbors of a given treatment is 0 and that

holds for each treatment.
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In the literature, a few more relevant conditions are also stated for meeting other desirable properties.
For the time being, we are focusing on the existence of only one W -matrix for a given RBD design layout.
When the elements of the W -matrix satisfy the conditions laid down in (iii) and (iv) above, we refer
to such a matrix as being ‘robust’. The sense of robustness is with respect to the presence of neighbor
effects. In the sequel, we will use X and W interchangeably, without making any distinction.

Our aim in this paper is to examine the conjecture stated in [Sapam-2021]. It turns out that for
any given set of values of b and v, there are at least two distinct RBD design layouts having underlying
X-matrices in the two opposite directions ! To start with, we study a few special cases in Sections 2-3-4,
before treating the general case in Section 5.

2 RBDs with v = b = 4
In an RBD with v=b=4, there are (4!)4 choices of design layouts - though plenty of them are ‘permutation
invariant’ in subsets. We consider one subset of them viz., 4!=24 RBDs starting with the first three blocks
in the natural order of the treatments i.e., treatment-levels 1, 2, 3, 4. Then only the last row [i.e., 4th

row] is made to be composed of a permutation of the treatment levels 1, 2, 3, 4. This results into 4! = 24
distinct design layouts. Our objective is to check the existence and non-existence of X-matrices satisfying
the conditions (i)−(iv) laid down above. We claim that there are two distinct design layouts among these
24 choices whose X-matrices are in opposite directions. For one of them, we can construct an X-matrix
satisfying all the conditions. For another, we argue that there does not exist any such X-matrix satisfying
all the conditions laid down above.

We start with the first choice of RBD (v=b=4) listed below in Table 2.

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Table 2: RBD (v=b=4)

Clearly, in this choice we can find out the following X-matrix in Table 3 satisfying all the four conditions
given above.

1 -1 1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1

Table 3: X-matrix of RBD in Table 1

Next we make another choice of the design layout shown in Table 4 below.
For this choice we argue that there does not exist any underlying X-matrix satisfying all the conditions

mentioned above. In this context, we consider the patterns of left-neighbor (LN) and right-neighbor (RN)
effects of the treatments in the below table [Table 5].

Given the above, we will now argue closely towards non-existence of an underlying X-matrix satisfying
the stated conditions. For convenience, we will use the following notations for x-values in this particular
case of b = v = 4, as shown in Table 6 below.

12
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1 2 3 4
1 2 3 4
1 2 3 4
2 1 3 4

Table 4: The second choice of RBD (v=b=4)

Treatments LN RN
1 4 4 4 2 2 2 2 3
2 1 1 1 4 3 3 3 1
3 2 2 2 1 4 4 4 4
4 3 3 3 3 1 1 1 2

Table 5: LN and RN treatments of the RBD in Table 3

We now analyse the x-values in Table 6 with reference to the conditions stated above, particularly,
(iii) and (iv). We note in passing that each x-value is confined to +1/ − 1 only. Moreover,∑

pi = ∑
qi = ∑

ri = ∑
si = 0 is a necessary condition to be satisfied by these elements. Meaningful

conditions from (iii) and (iv) suggest :

q1 + q2 + q3 + r4 = 0 (2)
p1 + p2 + p3 + s4 = 0 (3)
q1 + q2 + q3 + p4 = 0 (4)
p1 + p2 + p3 + q4 = 0 (5)

Therefore, it turns out that p4 = r4; q4 = s4. WOLG, we set p4 = r4 = +1 and q4 = s4 = −1. From
the above, we then infer that

p1 + p2 + p3 = +1; q1 + q2 + q3 = −1.
And these now suggest for Treatment level 1 and Treatment level 2 :

p1 + p2 + p3 + p4 = +2; q1 + q2 + q3 + q4 = −2.

Thus, eventually, we run into a contradiction regarding the choice of the x-values. This establishes
the points we are making.

Remark 1
It would be interesting to examine if any of the other 4! design layouts also exhibit the non existence
feature(s) of the underlying X- matrices! Surprisingly, indeed there are quite a few of them [16 in number]
in the non-existence category. All these 16 design layouts are shown in Table 7. The remaining 8 design
layouts [including the RBD shown above] exhibit affirmative solutions i.e., each one possesses an X-matrix
satisfying the necessary conditions. The design layouts as also the solutions are shown in Table 8.

1(p1) 2(q1) 3(r1) 4(s1)
1(p2) 2(q2) 3(r2) 4(s2)
1(p3) 2(q3) 3(r3) 4(s3)
2(q4) 1(p4) 3(r4) 4(s4)

Table 6: x-values for the second choice of RBD (v=b=4)
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Sl. no. RBDs Sl.no. RBDs
1. 1 2 3 4 9. 1 2 3 4

1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
1 2 4 3 3 1 2 4

2. 1 2 3 4 10. 1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
1 3 2 4 3 1 4 2

3. 1 2 3 4 11. 1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
1 3 4 2 3 2 4 1

4. 1 2 3 4 12. 1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
1 4 2 3 3 4 2 1

5. 1 2 3 4 13. 1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
2 1 3 4 4 1 3 2

6. 1 2 3 4 14. 1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
2 3 1 4 4 2 1 3

7. 1 2 3 4 15. 1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
2 4 1 3 4 2 3 1

8. 1 2 3 4 16. 1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4
2 4 3 1 4 3 1 2

Table 7: RBDs (v=b=4) having no X-matrices
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Sl no. RBDs corresponding X-matrix
1. 1 2 3 4 1 -1 1 -1

1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1

2. 1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
1 4 3 2 -1 1 -1 1

3. 1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
2 1 4 3 1 -1 1 -1

4. 1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
2 3 4 1 1 -1 1 -1

5. 1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
3 2 1 4 -1 1 -1 1

6. 1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
3 4 1 2 -1 1 -1 1

7. 1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
4 1 2 3 1 -1 1 -1

8. 1 2 3 4 1 -1 1 -1
1 2 3 4 -1 1 -1 1
1 2 3 4 1 -1 1 -1
4 3 2 1 1 -1 1 -1

Table 8: RBDs (v=b=4) having X- matrices
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3 RBDs with v=b=6
In the study on existence of optimal X- matrices, we generally ask for much more than one such matrix.
Consequently, it is necessary that b = v = 0(mod4).
However in this query about existence/non existence of just one matrix, we may deal with b = v =
0(mod2).

We now consider two RBDs with v=b=6 such that one has the X- matrix satisfying the four conditions
mentioned above and we argue that for the other design, no X-matrix is available. The layout of the
two RBDs are shown in the Tables 9 and 10 and the corresponding X-matrix of the design in Table 9 is
exhibited in Table 11.

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

Table 9: RBD (v=b=6): first choice

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
2 1 3 4 5 6

Table 10: RBD (v=b=6): second choice

1 -1 1 -1 1 -1
-1 1 -1 1 -1 1
1 -1 1 -1 1 -1
-1 1 -1 1 -1 1
1 -1 1 -1 1 -1
-1 1 -1 1 -1 1

Table 11: X-matrix of RBD (v=b=6) in Table 9

Remark 2
We claim that for the RBD in Table 10, there does not exist any X-matrix satisfying the stated conditions.
The details of our arguments are developed below. As in the case of the design layout with b = v = 4,
we use letter symbols for the elements of an X-matrix.

We analyse the conditions (i) - (iv) stated above with reference to the x- values of Table 12.∑
ai = ∑

bi = ∑
ci = ∑

di = ∑
ei = ∑

fi = 0 for all i = 1,...,6 is a necessary condition to be satisfied
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1(a1) 2(b1) 3(c1) 4(d1) 5(e1) 6(f1)
1(a2) 2(b2) 3(c2) 4(d2) 5(e2) 6(f2)
1(a3) 2(b3) 3(c3) 4(d3) 5(e3) 6(f3)
1(a4) 2(b4) 3(c4) 4(d4) 5(e4) 6(f4)
1(a5) 2(b5) 3(c5) 4(d5) 5(e5) 6(f5)
2(b6) 1(a6) 3(c6) 4(d6) 5(e6) 6(f6)

Table 12: x-values for the second choice of RBD (v=b=6)

by the these x- values. Moreover, from the conditions (iii) and (iv), we derive:

f1 + f2 + f3 + f4 + f5 + b6 = 0 (6)
f1 + f2 + f3 + f4 + f5 + f6 = 0 (7)
b1 + b2 + b3 + b4 + b5 + c6 = 0 (8)
b1 + b2 + b3 + b4 + b5 + a6 = 0 (9)
c1 + c2 + c3 + c4 + c5 + c6 = 0 (10)

d1 + d2 + d3 + d4 + d5 + d6 = 0 (11)

Therefore we can claim that b6 = f6 and a6 = c6. WOLG we set a6 = c6 = +1 and b6 = f6 = -1. Now
from the above relations (6) to (11) we then infer that
f1 + f2 + f3 + f4 + f5 = +1;
b1 + b2 + b3 + b4 + b5 = -1. In addition to this, the subtotal of the x- values of the first five terms of
treatment 4 is then,
(d1 + d2 + d3 + d4 + d5) = +1 and d6 = -1
or (d1 + d2 + d3 + d4 + d5) = -1 and d6 = +1
In the same way, for the treatment 5, either
(e1 + e2 + e3 + e4 + e5) = +1 and e6 = -1
or (e1 + e2 + e3 + e4 + e5) = -1 and e6 = +1
should be satisfied.
Then these suggest for the Treatment level 1 and the Treatment level 2:
a1 + a2 + a3 + a4 + a5 + a6 = +2
and b1 + b2 + b3 + b4 + b5 + b6 = −2
Thus eventually, we run into a contradiction regarding the choice of x- values.

4 RBD (v=4, b=6)
We further consider RBDs where the number of treatments and number of blocks are unequal with RBD
(v=4, b=6). The following two RBDs shown in Tables 13 and 14 are taken up for dealing with the
existence / non existence of X-matrix as in the above cases. For the RBD in Table 13, we have existence
result and it is shown in Table 15.

Remark 3
For the RBD in Table 14, there does not exist any X-matrix satisfying the stated conditions, and our
detailed arguments are developed below.

The arguments are very similar to those for RBD (v=4, b=4). Now the x-values for Table 14 are
denoted by pi, qi, ri, si, for i=1,2,...,6 as shown in Table 16.
We analysed the conditions (i)- (iv) mentioned above with reference to the x-values of RBD in Table 14.
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1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Table 13: The first choice of RBD (v=4, b=6)

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
2 1 3 4

Table 14: The second choice of RBD (v=4, b=6)

∑
pi = ∑

qi = ∑
ri = ∑

si = 0 is a necessary condition; further, conditions (iii) and (iv) also suggest
that

s1 + s2 + s3 + s4 + s5 + q6 = 0
s1 + s2 + s3 + s4 + s5 + s6 = 0
q1 + q2 + q3 + q4 + q5 + p6 = 0
q1 + q2 + q3 + q4 + q5 + r6 = 0

which implies that p6 = r6 and q6= s6. WOLG we set p6 = r6 =+1 and q6 = s6 = -1; then we can infer
that s1 + s2 + s3 + s4 + s5 = +1;
q1 + q2 + q3 + q4 + q5 = −1
Now for Treatment level 1 and Treatment level 2, the total of x-values are:

p1 + p2 + p3 + p4 + p5 + p6 = +2 and
q1 + q2 + q3 + q4 + q5 + q6 = −2 respectively,
which is a contradiction to the choice of x-values stated in the conditions.

Remark 4
The choice of the design layout in Table 14 suggests a non-existence result in the framework of b = 6, v = 4.
As in the case of an RBD with b = v = 4, here also we have 24 possible RBD layouts by variations of

1 -1 1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1

Table 15: X-matrix of RBD (v=4, b=6) in Table 13
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1(p1) 2(q1) 3(r1) 4(s1)
1(p2) 2(q2) 3(r2) 4(s2)
1(p3) 2(q3) 3(r3) 4(s3)
1(p4) 2(q4) 3(r4) 4(s4)
1(p5) 2(q5) 3(r5) 4(s5)
2(q6) 1(p6) 3(r6) 4(s6)

Table 16: x-values for the RBD (v=4, b=6) of Table 14

the treatment allocations in the last block. It would be interesting to examine how many of these layouts
result in non-existence!

5 RBD(b = 2p, v = 2q, p and q being positive integers)
Having understood the existence/non-existence results in the particular frameworks of selected values of
b and v, we now venture into the general case. Towards the non-existence result, we start with the
RBD(b, v) design layout as

Db×v =




1 2 3 · · · v

1 2 3 · · · v
... ... . . . ...
1 2 3 · · · v

2 1 3 · · · v




Further, let
Xb×v =

[
((xij))

]

be the usual matrix of associated covariate-values.
This suggests : xij = covariate value at (i, j) position, 1 ≤ i ≤ b, 1 ≤ j ≤ v. Note that we necessarily

require ∑b
i=1 xij=0 for each j, 1 ≤ j ≤ v.

Further, for orthogonality of left neighbor (LN) and right neighbor (RN) effects, we need additional
conditions as stipulated in (iii) - (iv) in Section 1.

For j = 1, 2, 3 and v, we derive the conditions:
(i) RN of 1 implies ∑

i xi2 − xb2 + xb3=0
(ii) LN of 2 implies ∑

i xi1 − xb1 + xbv=0
(iii) LN of 3 implies ∑

i xi2 − xb2 + xb1=0
(iv) RN of v implies ∑

i xi1 − xb1 + xb2=0.
Now from these (i) to (iv) conditions, we can see that xb1 = xb3 and xb2 = xbv.
WOLG we may set xb1 = xb3= +1 and xb2 = xbv= -1.

Then clearly we deduce from (iii) and (iv) above that ∑
i xi2 = xb2 − xb1= - 2 and ∑

i xi1 = xb1 − xb2=
+2 respectively. And these are both contradictions to our stated conditions.

Towards existence result, as in the particular cases, we may start with the standard RBD for treatment
allocations in the natural order for each block and follow the allocations of the x-values as +1’s and −1’s
alternately as are shown in the particular cases. In matrix notation, in this case, the solution matrix is
represented as the matrix product H2 ⊗ Jp×q which is a succession of the Hadamard matrix of order 2
i.e., of H2 matrix in every row and column covering the matrix J of order p × q.
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H2 ⊗ Jp×q =




H2 H2 · · · H2
H2 H2 · · · H2
... ... . . . ...

H2 H2 · · · H2
H2 H2 · · · H2




6 Concluding remark
The present study was meant to examine robustness [with respect to presence of neighbor effects] of
optimal covariates designs in RBD set-ups. The query was raised in [Sapam-2021]. It transpires from
the current study that the choice of the RBD layout is very crucial for the robustness to hold. Further
studies wrt higher order design layouts such as LSDs, MOLSDs etc may be revealing as well.
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Abstract
The cumulative past entropy (CPE), introduced by [5] is viewed as a measure of uncertainty. [9] proposed the
bivariate of form DCPE, namely bivariate dynamic cumulative past entropy (BDCPE) and discussed some of its
properties. In this article, we introduced the weighted form of BDCPE and study some of its properties. We also
look into the problem of extending weighted CPE for conditionally specified models. We derived some features
of conditional distributions. It is shown that the proposed measure uniquely determines the distribution function,
together with certain characterization results. Additionally, we suggested a non-parametric estimator for the
newly developed measure.
Keywords: Life distributions, Shannon entropy, Past lifetime, Vector valued hazard rate, Bivariate distribution.

1 Introduction
An important measure of uncertainty associated with a random variable X is the notion of entropy,
introduced by [17]. If X is a non-negative random variable having an absolutely continuous distribution
function F(x) with probability density function f(x), then the Shannon’s entropy is defined as

H(X) = −
∞∫

0

f(x) log f(x)dx. (1)

H(X) measures expected uncertainty in f(x) about the predictability of an outcome of X.
Even though Shannon’s entropy finds applications in many areas of research, [16] identified some

limitations of the use of (1) in measuring the randomness of certain systems and thereby to overcome
those limitations, introduced an alternative measure of uncertainty that extends Shannon entropy to
random variables with continuous distributions called cumulative residual entropy (CRE), which relates to
uncertainty on the future lifetime of a system.

Motivated by the salient features of CRE, [5] proposed a dual concept of CRE called cumulative past
entropy (CPE) and is defined as

ε̄(X) = −
∫ ∞

0
F (x) logF (x) dx. (2)

The entropy (2) measures the uncertainty about the inactivity time of X.
[5] introduced the concept of CPE for past lifetime called dynamic CPE (DCPE). For a non-negative

random variable X representing the lifetime of a component, the dynamic cumulative past entropy (DCPE)
is the CPE associated with the random variable X|X < t, and is defined as

ε̄(X; t) = −
∫ t

0

F (x)
F (t) log F (x)

F (t) dx, t > 0. (3)

© 2024 Author(s). (https://www.thegsa.in/).
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For more properties, applications of (3), one may refer to [1] and [6].
The concept of weighted distributions was introduced by [15] in connection with modelling statistical

data, where the usual practice of employing standard distributions is not found appropriate in some cases.
However, in certain applied areas, such as reliability theory or mathematical neurobiology, it is desirable to
deal with shift-dependent information measures. In recent years, this concept has been applied in many
areas of statistics, such as analysis of family size, world life population study, renewal theory, biomedical,
statistical ecology, reliability modelling etc.

Associated to a random variable X with probability density function f and to a non-negative real
function w, we can define the weighted random variable Xw with density function

fw(x) = w(x)f(x)
E(w(X)) ,

where we assume 0 < E(w(X)) < ∞. When w(x) = x, Xw is called the length (or size) biased random
variable.

[3] have introduced the concept of weighted entropy through

Hw(X) = −
∞∫

0

xf(x) logf(x)dx (4)

The factor x, inside the integral on the right hand side of (4) represents a weight linearly emphasizing
the occurrence of the event {X = x}. This yields a length biased shift dependent information measure
assigning greater importance to larger values of X. For more properties and applications of weighted
entropy, we refer to [4], [10] and [7].

Recently [9] have considered extension of CPE to bivariate setup, namely bivariate cumulative past
entropy (BCPE) and is given by

ε̄(X1, X2) = −
∫ b1

0

∫ b2

0
F (x1, x2) logF (x1, x2) dx2dx1. (5)

They have also studied BCPE for past lifetime called bivariate dynamic CPE (BDCPE), defined as

ε̄(t1, t2) = −
∫ t1

0

∫ t2

0

F (x1, x2)
F (t1, t2)

log F (x1, x2)
F (t1, t2)

dx2dx1. (6)

In this paper, we consider the weighted form of BDCPE namely bivariate dynamic weighted CPE
(BDWCPE) and study its various properties. The rest of the chapter is organized as follows. Section
2 includes the definition and basic properties of the BDWCPE. In section 3, we consider the behaviour
of dynamic weighted CPE for conditional distributions. In section 3.1, we consider the behaviour of
conditional dynamic weighted CPE for Xj < tj. Section 3.2 deals with the behaviour of conditional
dynamic weighted CPE for Xj = tj. In section 4, a non-parametric estimator is suggested for the
conditional dynamic weighted CPE and in section 4.1, we applied the estimator to a real data set.

2 Bivariate Weighted Cumulative Past Entropy
In studying the reliability aspects of multi-component system with each component having a lifetime
depending on the lifetimes of the other components, multivariate life distributions are employed. Reliability
characteristics in the univariate case can be extended to the corresponding multivariate version. Even
though a lots of interest has been evoked on the entropy of residual and past lifetime in the univariate
case, only a few works seem to have been done in higher dimensions. In a recent work, [14] have considered
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extension of DCRE to bivariate setup and studied its properties. Several generalizations to the concept
of bivariate DCRE can be found in [18] and [14]. In various contexts, the uncertainty is not necessarily
related to the future but may refer to the past. It is to be noted that the concepts in past time are more
appropriate than those truncated from below when the observations are predominantly from left tail. This
shows the relevance and usefulness of studying CPE when uncertainty is related to the past. For more
recent works on bivariate information notions and weighted measures one may refer to [11] and [2].

In this section, we introduce the weighted form of BDCPE defined in (6). Since the past lifetime has
always a finite support we restrict our attention to random variables with finite supports. Therefore, we
assume that the support of (X1, X2) is included in (0, b1)×(0, b2) for some non negative real values b1, b2.

In this section, we consider BCPE and BDCPE defined in (5) and (6) respectively for weighted models.

Definition 1. Let X = (X1, X2) be a bivariate random vector having the distribution function F (x1, x2),
then we define the bivariate weighted CPE (BWCPE) as

Ē w(X1, X2) = −
∫ b1

0

∫ b2

0
x1x2 F (x1, x2) logF (x1, x2) dx2dx1, (7)

provided the integral on the right hand side is finite.

If X1 and X2 are independent, then from (7), we get

Ē w(X1, X2) =
(∫ b2

0
x2F (x2)dx2

)
Ē w(X1) +

(∫ b1

0
x1F (x1)dx1

)
Ē w(X2). (8)

The following is an additive property of BWCPE.
The following proposition shows that BWCPE is not invariant under non-singular transformations.

Proposition 1. Let Y = (Y1, Y2) be a non negative bivariate random vector. If Yi = φi(Xi), i = 1, 2
are one to one transformations with φi(Xi) are differentiable function, then

Ē w(Y1, Y2) = −
∫ b1

0

∫ b2

0
x1x2 F (x1, x2) logF (x1, x2) | J | dx2dx1, (9)

where J = ∂
∂x1
φ1(x1) ∂

∂x2
φ2(x2) is the Jacobian of the transformation.

If X = (X1, X2) represents the lifetimes of two components in a system where both the components
are found failed at times t1 and t2, respectively, then the measure of uncertainty associated with the past
lifetimes of the system are important. In the following, we define bivariate dynamic WCPE (BDWCPE).

Definition 2. For an absolutely continuous non-negative bivariate random vector X = (X1, X2) with joint
pdf f(x1, x2) and distribution function F (x1, x2), the bivariate dynamic WCPE (BDWCPE) is defined as

Ē w(t1, t2) = −
∫ t1

0

∫ t2

0
x1x2

F (x1, x2)
F (t1, t2)

log F (x1, x2)
F (t1, t2)

dx2dx1, (10)

which is the two dimensional extension of dynamic WCPE. If X1 and X2 are independent, then

Ē w(t1, t2) = mw
2 (t2) Ē w(t1) +mw

1 (t1) Ē w(t2), (11)

where mw
i (ti) = 1

F (ti)
∫ ti

0 xiF (xi) dxi, are the marginal weighted expected inactivity time (WEIT) of the
components Xi, i = 1, 2.
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3 Conditional Dynamic Weighted CPE
When we consider bivariate measures, it is necessary that the measurement of uncertainty on the basis of
one component is not affected by the missing or unreliable data on the other component, and hence it is
necessary to consider component-wise measures.

Conditional Dynamic Weighted CPE for Xi given Xj < tj
In this section, we consider the conditional dynamic weighted CPE for Xi given Xi < tj and its properties.
For a bivariate random vector X = (X1, X2), let us consider another set of bivariate random vector
Y = (Y1, Y2) defined by Yi = [Xi|X1 < t1, X2 < t2], i = 1, 2, which corresponds to the conditional
distributions of Xi subject to the condition that the first component failed at any time during (0, t1)
and the second one during (0, t2). Then the dynamic WCPE for Y , called conditional dynamic WCPE
(CDWCPE) is defined as

Ē ∗w
1 (X; t1, t2) = −

∫ t1

0
x1
F (x1, t2)
F (t1, t2)

log F (x1, t2)
F (t1, t2)

dx1 (12)

and
Ē ∗w

2 (X; t1, t2) = −
∫ t2

0
x2
F (t1, x2)
F (t1, t2)

log F (t1, x2)
F (t1, t2)

dx2. (13)

In particular if X1 and X2 are independent, then Ē ∗w
i (X; t1, t2) = Ē w

Xi
(ti), i = 1, 2.

In the following, we compute Ē ∗w
i (X; t1, t2) for some well known distributions.

Example 1. Consider the bivariate uniform distribution specified by the distribution function

F (t1, t2) = t1+θ log t2
1 t2; 0 < t1, t2 < 1, θ ≤ 0. (14)

Straightforward calculations, using (12), give

Ē ∗w
1 (X; t1, t2) = 1

(3 + θ log t2)2 t
2
1

{
−3 + θ log t2 + log t1+θ log t2

1 [−θ log t2

+ log tθ log t2
1 (3 + θ log t2)]t1+θ log t2

1

}
.

Similarly, using (13) we get

Ē ∗w
2 (X; t1, t2) = 1

(3 + θ log t1)2 t
2
2

{
−3 + θ log t1 + log t1+θ log t1

2 [−θ log t1

+ log tθ log t1
2 (3 + θ log t1)]t1+θ log t1

2

}
.

Example 2. Consider the bivariate power distribution specified by the distribution function

F (t1, t2) = t2k1−1+θ log t2
1 t2k2−1

2 ; θ < 0, k1, k2 > 0, 0 < t1, t2 < 1. (15)

Using (12), we get

Ē ∗w
1 (X; t1, t2) = t1

(1 + 2k1 + θ log t2)2 {−t1(1 + 2k1 − θ log t2)

+ log(t2k1−1+θ log t2
1 )t2k1+θ log t2

1

[
log t2k1+θ log t2

1

+ 2(−1 + log t2k1+θ log t2
1 )k1

+ (−1 + log t2k1+θ log t2
1 )θ log t2

]}
. (16)
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Similarly, using (13), we get

Ē ∗w
2 (X; t1, t2) = t2

(1 + 2k2 + θ log t1)2 {−t2(1 + 2k2 − θ log t1)

+ log(t2k2−1+θ log t1
2 )t2k2+θ log t1

2

[
log t2k2+θ log t1

2

+ 2(−1 + log t2k2+θ log t1
2 )k2

+ (−1 + log t2k2+θ log t1
2 )θ log t1

]}
. (17)

Now we study some characterization results of Conditional Dynamic Weighted CPE.

In the sequel we give the definitions of bivariate reversed hazard rate (BRHR) function and bivariate
weighted expected inactivity time (BWEIT).

Definition 3. For a random vector X = (X1, X2) with distribution functions F (t1, t2)

(i) the bivariate reversed hazard rate is defined as a vector,
h̄(t1, t2) = (h̄1(t1, t2), h̄2(t1, t2)), where

h̄i(ti, tj) = ∂

∂ti
logF (ti, tj), i ̸= j = 1, 2 (18)

are the components of bivariate reversed hazard rate;

(ii) the bivariate weighted EIT is defined by the vector,
m̄w(t1, t2) = (m̄w

1 (t1, t2), m̄w
2 (t1, t2)), where

m̄w
i (ti, tj) = 1

F (ti, tj)

∫ ti

0
xiF (xi, tj) dxi, i ̸= j = 1, 2. (19)

which measures the the expected waiting time of the first component conditioned on the fact that both
the components were failed before times t1 and t2, respectively.

Note that (12) can alternatively written as

Ē ∗w
1 (X; t1, t2) = m̄w

1 (t1, t2) logF (t1, t2) −
∫ t1

0
x1
F (x1, t2)
F (t1, t2)

logF (x1, t2) dx1. (20)

Similarly, (13) can be written as

Ē ∗w
2 (X; t1, t2) = m̄w

2 (t1, t2) logF (t1, t2) −
∫ t2

0
x2
F (t1, x2)
F (t1, t2)

logF (t1, x2) dx2. (21)

Differentiating (12) and (13) with respect to t1 and t2 respectively, we get in general

∂

∂ti
Ē ∗w

i (X; t1, t2) = h̄i(t1, t2)[m̄w
i (t1, t2) − Ē ∗w

i (X; t1, t2)]. (22)
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Characterization Results Based on Conditional Dynamic Weighted CPE for Xi given Xj < tj

In this section, we consider some important characterization results based on conditional dynamic
weighted CPE for Xi given Xj < tj. In the following theorem, we show that under certain conditions,
Ē ∗w

i (X; t1, t2); i = 1, 2 determines the distribution function uniquely.

Theorem 2. Let X = (X1, X2) be a non negative bivariate random variable having absolutely continuous
distribution function F with respect to the Lebesgue measure. Then CDWCPE of X, defined in (12) and
(13), uniquely determines the distribution function provided they are finite.

Proof. Let X and Y be two bivariate random variables having joint distribution functions F and G,
respectively. Also let, for all t1, t2 ≥ 0,

Ē ∗w
i (X; t1, t2) = Ē ∗w

i (Y ; t1, t2), i = 1, 2.

Differentiating Ē ∗w
i (X; t1, t2) and Ē ∗w

i (Y ; t1, t2) with respect to ti, i = 1, 2 and on using the relation
ϕX

i (t1, t2)m̄w
i (t1, t2) = ti − ∂

∂ti
m̄w

i (t1, t2), from (22) we have

∂

∂ti
m̄w

iX(t1, t2) =
∂

∂ti
Ē ∗w

i (X; t1, t2)m̄w
iX(t1, t2) + tiĒ ∗w

i (X; t1, t2) − timi
w
X(t1, t2)

Ē ∗w
i (X; t1, t2) − m̄w

iX(t1, t2)

and
∂

∂ti
m̄w

iY (t1, t2) =
∂

∂ti
Ē ∗w

i (Y ; t1, t2)m̄w
iY (t1, t2) + tiĒ ∗w

i (Y ; t1, t2) − tim̄
w
iY (t1, t2)

Ē ∗w
i (Y ; t1, t2) − m̄w

iY (t1, t2)
.

Let
Ē ∗w

i (X; t1, t2) = Ē ∗w
i (Y ; t1, t2) = θi(t); t = (t1, t2)

and
ψi(t, k) =

∂
∂ti
θi(t)k + tiθi(t) − tik

θi(t) − k
, t = (t1, t2), i = 1, 2.

Thus we can write
∂

∂ti
m̄w

iX(t1, t2) = ψi(t, m̄w
iX(t1, t2))

and
∂

∂ti
m̄w

iY (t1, t2) = ψi(t, m̄w
iY (t1, t2)). (23)

Now we show that m̄w
i (t1, t2)) uniquely determines the distribution function. Differentiating (19) with

respect to t1, we get
∂

∂t1
logF (t1, t2) = 1

m̄w
1 (t1, t2)

(
t1 − ∂

∂t1
m̄w

1 (t1, t2)
)

Now integrating the above equation on (t1, b1), we get

F (t1, t2) = F2(t2) exp
{

−
∫ b1

t1

1
m̄w

1 (x, t2)

(
x− ∂

∂x
m̄w

1 (x, t2)
)
dx

}
(24)

Similarly for i = 2,

F (t1, t2) = F1(t1) exp
{

−
∫ b2

t2

1
m̄w

2 (t1, x)

(
x− ∂

∂x
m̄w

2 (t1, x)
)
dx

}
(25)
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Allowing t2 to tend to b2 in (24), we get

F1(t1) = exp
{

−
∫ b1

t1

1
m̄w

1 (x, b2)

(
x− ∂

∂x
m̄w

1 (x, b2)
)
dx

}
(26)

Now substitute (26) in (25). Hence the distribution of X is uniquely determined as

F (t1, t2) = exp
{

−
∫ b1

t1

1
m̄w

1 (x, b2)

(
x− ∂

∂x
m̄w

1 (x, b2)
)
dx

−
∫ b2

t2

1
m̄w

2 (t1, x)

(
x− ∂

∂x
m̄w

2 (t1, x)
)
dx

}
. (27)

Or equivalently from (25) as

F (t1, t2) = exp
{

−
∫ b1

t1

1
m̄w

1 (x, t2)

(
x− ∂

∂x
m̄w

1 (x, t2)
)
dx

−
∫ b2

t2

1
m̄w

2 (b1, x)

(
x− ∂

∂x
m̄w

2 (b1, x)
)
dx

}
. (28)

Hence from (23), we get Ē ∗w
i (X; t1, t2) determines m̄w

iX(t1, t2). Again using the fact that the vector
valued WEIT uniquely determines the bivariate distribution function, the proof is complete.

In the following theorem we characterize uniform distribution. The proof follows easily as X1 and X2
are independent.

Theorem 3. Let X = (X1, X2) be a bivariate random variable having joint distribution function F . Then
X is said to follow bivariate uniform distribution with distribution function

F (t1, t2) = t1t2
b d

, 0 ≤ t1 ≤ b, 0 ≤ t2 ≤ d,

if and only if Ē ∗w
i (X; t1, t2) = t2

i

9 , i = 1, 2.

In the following theorem we give another characterization result for uniform distribution with dependent
components.

Theorem 4. Let X be a non negative bivariate random vector with Ē ∗w
i (X; t1, t2) < ∞ and WEIT

m̄w
i (t1, t2), i = 1, 2 for all ti ≥ 0. Then for 0 < t1, t2 < 1, θ ≤ 0,

Ē ∗w
i (X; t1, t2) =

(
1 + θ log tj
3 + θ log tj

)
m̄w

i (t1, t2), i ̸= j = 1, 2, (29)

if and only if X is distributed as bivariate uniform with

F (t1, t2) = t1+θ log t2
1 t2, 0 < t1, t2 < 1, θ ≤ 0. (30)

Proof. The if part is straight forward if X follows the distribution (30), then

m̄w
i (t1, t2) = t2

i

3+θ lg tj
and Ē ∗w

1 (X; t1, t2) = t2
i (1+θ log tj)
(3+θ log tj)2 , i ̸= j = 1, 2.
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To prove the converse, assume that (29) holds. Then differentiating (29) with respect to ti and using
(22), we get

∂

∂ti
m̄w

i (t1, t2) = 2ti
3 + θ log tj

i ̸= j = 1, 2,

which on integration gives
m̄w

i (t1, t2) = t2i
3 + θ log tj

+ ci(tj)

where ci(tj) is the constant of integration. Now, ci(tj) = 0 as m̄w
i (t1, t2) → 0 for ti → 0, which in turn

gives the bivariate WEIT. Hence the result follows on using the fact that bivariate WEIT determines the
distribution function uniquely.

The following theorem gives characterization of the bivariate power distribution.

Theorem 5. Let X be a non negative random vector in the support (0, b1) × (0, b2), bi < ∞, i = 1, 2
with Ē ∗w

i (X; t1, t2) finite. Then

Ē ∗w
i (X; t1, t2) = ci(tj)m̄w

i (t1, t2); i ̸= j = 1, 2, (31)

if and only if X follows bivariate power distribution with distribution function

F (t1, t2) =
(
t1
b1

)c1( t2
b2

)c2+θ log
(

t1
b1

)

, θ ≤ 0, (32)

where ci = ci(bj)
[1−ci(bj)] .

Proof. The if part of the theorem is straight forward. To prove the reverse part, if (29) holds, then
differentiating both sides with respect to ti, and on using (22), we get

∂

∂ti
mw

i (t1, t2) = ti[1 − ci(tj)], i ̸= j = 1, 2,

which on integration gives
m̄w

i (t1, t2) = [1 − ci(tj)]
t2i
2 + zi(tj),

where zi(tj) is a constant of integration. Now zi(tj) = 0 as m̄w
i (t1, t2) → 0 for ti → 0. Which in turn

gives the bivariate weighted EIT. Hence the result follows on using the fact that bivariate weighted EIT
determines the distribution function uniquely.

Now we define new classes of life distributions based on vector dynamic WCPE that are analogous to
certain properties of the vector dynamic CRE defined in [13].

Definition 4. A random variable X is said to be increasing (decreasing) bivariate reversed hazard rate if
h̄i(t1, t2) is increasing (decreasing) in ti, i = 1, 2.

Definition 5. A random variable X is said to be increasing (decreasing) weighted expected inactivity
time if m̄w

i (t1, t2) is increasing (decreasing) in ti, i = 1, 2.

Definition 6. For t1, t2 > 0, F is said to have bivariate increasing (decreasing) weighted uncertainty in
past life BIWUPL (BDWUPL) if Ē ∗w

i (X; t1, t2) is increasing (decreasing) in ti, i = 1, 2.
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The following theorem gives an upper bound to bivariate WCPE in terms of weighted expected inactivity
time as follows.

Theorem 6. For t1, t2 > 0, if F is BIWUPL (BDWUPL)

Ē ∗w
i (X; t1, t2) ≤ (≥)m̄w

i (t1, t2).

Proof. Differentiating Ē ∗w
i (X; t1, t2) with respect to ti, we get (22). The proof follows by using the fact

that rX
i (t1, t2) is non negative for all ti.

Conditional Dynamic Weighted CPE for Xi given Xj = tj
The determination of the joint distribution function of X = (X1, X2), when conditional distributions of
(X1|X2 = t2) and (X2|X1 = t1) are known, has been an important problem dealt with by many researchers
in the past. This approach of identifying a bivariate density using the conditionals is called the conditional
specification of the joint distribution. These conditional models are often useful in many two component
reliability systems, when the operational status of one component is known. Let the distribution function
of Ȳi

∗ = (Xi|Xi < ti, Xj = tj), i ̸= j = 1, 2 is defined as F ∗
i (ti|tj). Then, for an absolutely continuous

nonnegative bivariate random vector X, the conditional dynamic DWCPE of Ȳi
∗
, i ̸= j = 1, 2 is defined

as

ζ̄∗w
1 (X; t1, t2) = −

∫ t1

0
x1
F ∗

1 (x1|t2)
F ∗

1 (t1|t2)
log F

∗
1 (x1|t2)
F ∗

1 (t1|t2)
dx1 (33)

and
ζ̄∗w

2 (X; t1, t2) = −
∫ t2

0
x2
F ∗

2 (x2|t1)
F ∗

2 (t2|t1)
log F

∗
2 (x2|t1)
F ∗

2 (t2|t1)
dx2. (34)

In particular if X1 and X2 are independent, then ζ̄∗w
i (X; t1, t2) = Ē w

Xi
(ti), i = 1, 2.

In the sequel we give the definitions of bivariate reversed hazard rate and bivariate weighted EIT
functions for the random variable Ȳi

∗.

Definition 7. For a random vector X = (X1, X2) with distribution functions F ∗
i (ti|tj), i ̸= j = 1, 2

(i) the bivariate reversed hazard rate is defined as a vector,
h̄∗(t1|t2) = (h̄∗

1(t1|t2), h̄∗
2(t1|t2)), where

h̄∗
i (ti|tj) = ∂

∂ti
logF ∗

i (ti|tj), i ̸= j = 1, 2 (35)

are the components of bivariate reversed hazard rate;

(ii) the bivariate WEIT is defined by the vector,
m̄∗w(t1|t2) = (m̄∗w

1 (t1|t2), m̄∗w
2 (t1|t2)), where

m̄∗w
i (ti|tj) = 1

F ∗
i (ti|tj)

∫ ti

0
xiF

∗
i (xi|tj) dxi, i ̸= j = 1, 2. (36)

which measures the the expected waiting time of Xi given that Xi < ti and Xj = tj.
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Differentiating (33) and (34) with respect to t1 and t2 respectively, we get in general
∂

∂ti
ζ̄∗w

i (X; t1, t2) = h̄∗
i (t1|t2)[m̄∗w

i (t1|t2) − ζ̄∗w
i (X; t1, t2)]. (37)

Now we define new classes of life distributions based on vector dynamic WCPE that are analogous to
certain properties of the vector dynamic CRE defined in [12]
Definition 8. A random variable X is said to be increasing (decreasing) bivariate RHR if h̄∗

i (ti|tj) is
increasing (decreasing) in ti, i = 1, 2.
Definition 9. A random variable X is said to be increasing (decreasing) weighted expected inactivity
time if m̄∗w

i (ti|tj) is increasing (decreasing) in ti, i = 1, 2.
The following theorem gives the necessary and sufficient condition for ζ̄∗w

i (X; t1, t2) to be increasing
(decreasing) vector dynamic WCPE.
Theorem 7. For t1, t2 > 0, ζ̄∗w

i (X; t1, t2) is increasing (decreasing) in ti, i = 1, 2 if and only if
ζ̄∗w

i (X; t1, t2) ≤ (≥)m̄∗w
i (ti|tj), i, j = 1, 2, i ̸= j.

Proof. Differentiating ζ̄∗w
i (X; t1, t2) with respect to ti, we get (37). The proof follows by using the fact

that r∗
i (ti|tj) is non negative for all ti.

Analogous to Theorem 8, the following theorem establishes a fundamental relationship between
dynamic WCPE and weighted EIT of Xi given Xj = tj, i ̸= j = 1, 2. The proof is omitted.
Theorem 8. Let X = (X1, X2) be an absolutely continuous non negative bivariate random vector
with finite ζ̄∗w

i (X; t1, t2) and bivariate weighted EIT components m̄∗w
i (ti|tj), i ̸= j = 1, 2. Then for all

t1, t2 ≥ 0,

ζ̄∗w
1 (X; t1, t2) =

∫ t1

0
m̄∗w

1 (x1|t2)f̄ ∗
1 (x1|t2)dx1 (38)

and

ζ̄∗w
2 (X; t1, t2) =

∫ t2

0
m̄∗w

2 (t1|x2)f̄ ∗
2 (t1|x2)dx2, (39)

where f̄ ∗
i (xi; tj) is the density function of (Xi|Xi < ti, Xj = tj), i ̸= j = 1, 2.

4 Estimation of Conditional Dynamic Weighted Cumulative Past
Entropy

In this section, we focused on constructing non-parametric estimators for CDWCPE. Let (X1i, X2i); i =
1, . . . , n be n independent and identically distributed pairs of lifetimes with joint distribution function
F (x1, x2). Based on these observations and using the kernel density ki(.), i = 1, 2, a non-parametric
estimator for F̄ (x1, x2) is defined as

F̂ (x1, x2) = 1
na2

n

n∑

j=1
K1

(
x1 −X1j

an

)
K2

(
x2 −X2j

an

)
, (40)

where
Ki (z) = an

z∫

0

ki (v) dv, i = 1, 2 (41)

and {an} is a non-increasing sequence of positive real numbers such that an → 0 and nan → ∞, as
n → ∞ . From (12) and (13), we propose a non-parametric kernel estimator for CDWCPE as follows.
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Definition 10. Let X = (X1, X2) be a random sample drawn from a population having distribution
function F (x1, x2). From (12) and (13), we define the non-parametric kernel estimator for CDWCPE as
follows.

Ē ∗w
1 (X; t1, t2) = −

∫ t1

0
x1
F̂ (x1, t2)
F̂ (t1, t2)

log F (x1, t2)
F̂ (t1, t2)

dx1 (42)

and
Ē ∗w

2 (X; t1, t2) = −
∫ t2

0
x2
F̂ (t1, x2)
F̂ (t1, t2)

log F (t1, x2)
F̂ (t1, t2)

dx2, (43)

where
F̂ (t1, t2) = 1

n

n∑

k=1
I(X1k < t1, X2k < t2) is the empirical distribution function

and

I(X1k < t1, X2k < t2) =
{

1, X1k < t1, X2k < t2
0, otherwise.

is the indicator function of the event {X1k < t1, X2k < t2}.

Numerical Illustration
In this section, we illustrate the usefulness of the proposed estimator given in (42) and (43) using a real
life data set.

Example 3. Consider the data-set reported by [8], which consists of the failure times of 20 sample units
from a system consisting of three components. Here we consider the failure times of first two components.

Here we use the bootstrapping procedure. At each value of (t1, t2), we calculate the bias and MSE of
ˆ̄E ∗w

i (X; t1, t2), i = 1, 2 using 100 bootstrap samples of size 20. Table 1 presents the absolute values of
the bias and MSE for ˆ̄E ∗w

i (X; t1, t2), i = 1, 2 with samples of size n = 20. From Table 1, we can see that
for t1 > (<) t2, absolute values of bias and MSE of ˆ̄E ∗w

1 (X; t1, t2) is greater (less) than ˆ̄E ∗w
2 (X; t1, t2).

When the entropy is lower, we know that there is a greater likelihood of an event happening. Table results
indicate that there is a likelihood of an increase in the time to the second failure time as the time to the
first failure time passes. If there was an immediate first failure, it would be expected that the second
would follow shortly after.

(t1, t2) Bias of MSE of
ˆ̄E ∗w

1 (X; t1, t2) ˆ̄E ∗w
2 (X; t1, t2)

(3.85, 3.88) (-0.0871, -0.1673) (0.0321, 0.2635)
(2.42, 3.86) (0.2339, -0.5677) (0.1044, 0.5018)
(2.70, 2.17) (0.3994, 0.0234) (0.2341, 0.0554)
(1.53, 2.08) (-0.0015, -0.1939) (0.0045, 0.0532)
(1.93, 2.08) (-0.2183, -0.2249) (0.0416, 0.0759)
(2.50, 2.08) (-0.2363, -0.1207) (0.0735, 0.0335)
(2.50, 3.88) (-0.0639, 0.1871) (0.0175, 0.4379)

Table 1: Bootstrap bias and MSE estimates of ˆ̄E ∗w
i (X; t1, t2) for the failure times of the components
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Figure 1: Graphs of ˆ̄E ∗w
i (X; t1, t2), i = 1, 2 for the failure times of two components.

Figure 1 shows the graph of ˆ̄E ∗w
i (X; t1, t2), i = 1, 2 for the real life data set and we can see that

the expected weighted uncertainty in the predictability about the failure times of two components are
decreasing in t1 and t2. It implies that as time progresses, the uncertainty associated with predicting
when each component will fail is decreasing. Lower uncertainty in failure predictions can lead to more
effective maintenance strategies. If we can predict failures more accurately, we can optimize maintenance
schedules, reduce downtime, and manage resources more efficiently.

To illustrate the effectiveness of our proposed estimator, we calculated the CDWCPE and univariate
DWCPE for the real life data set. In particular, if t1 = 2.50, the univariate DWCPE for the failure time
of first component is

ˆ̄E w(X1; t1) = 2.369.

The univariate DWCPE for the failure time of second component is

ˆ̄E w(X;t2) = 2.6913.

Using (42) and (43), the CDWCPE is
(

ˆ̄E w∗
1 (X; t1, t2), ˆ̄E w∗

2 (X; t1, t2)
)

= (2.2189, 1.4519). (44)

From (44) we can see that for all possible values of t1 and t2, when we consider the failure times of
two components jointly, the expected weighted uncertainty about the predictability of failure time of
components decreases and CDWCPE will give more information about the predictability of failure times of
two components. This is an indication that in survival analysis, if we have the knowledge about the failure
time of only one component, the expected weighted uncertainties are very high, where as if we have the
knowledge about failure times of all the components, it decreases. So we suggest that in situations like
this to consider the bivariate weighted CPE to study the failure times of multiple the components.
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Abstract
The bivariate exponential distribution with exponential margins defined by Gumbel [1] Type-I model is a continuous
lifetime distribution. In practice, however, there may be a possibility of instantaneous failure, that is, possibility
of both variables taking value zero with positive probability. Thus we get a mixture distribution with positive
probability at X = 0 and Y = 0 in bivariate exponential distribution, where the marginals too are exponential
distribution with positive probability at instantaneous failure, that is, at X = 0 and at Y = 0. It is observed that
the joint probability density function and the cumulative distribution function can be expressed in compact form.
Here we present Bayes’ method of estimation of the three parameters p1, p2 and θ of the bivariate exponential
distribution with positive probability at instantaneous failure. We use squared error loss function. The bias and
mean squared error (MSE) of these estimators are computed using simulation.
Keywords: Bayes estimator, squared error loss function.

1 Introduction
Exponential distribution has been studied extensively in the last centuries and has numerous applications,
specially in the field of Reliability and Analysis of life-time data. Its cumulative distribution function (cdf)
is given by

F (x, λ) = 0 ; x ≤ 0
= 1 − exp(−λx) ; x ≥ 0, λ > 0. (1.1)

Its probability density function (pdf) is

f(x, λ) = λ exp(−λx) ; x ≥ 0, λ > 0,

= 0 ; otherwise,
(1.2)

denoted as X ∼ Exp(λ), where λ is the scale parameter.
A mixture of degenerate distribution (degenerate at zero) and exponential distribution occurs frequently

in many practical situations. For instance, the life of a component may have an exponential distribution but
some of the components may fail instantaneously. Another possible application of the mixture distribution
is in clinical trials where a drug may have no response with probability 1 − p, (0 < p ≤ 1) but once there

© 2024 Author(s). (https://www.thegsa.in/).
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is a response, the length of response may follow exponential distribution. Hence, a mixed failure time
distribution (MFTD) is proposed by Kleyle and Dahiya [2] as follows:

F (x) = 0 ; x < 0
= 1 − pe−λx ; x ≥ 0, 0 < p ≤ 1, λ > 0,

where, P (X = 0) = 1 − p. They have studied estimation of parameters of this distribution from Type-I
censored data.

Jayade and Prasad [3] have studied estimation of parameters of this distribution based on modified
sampling scheme. Dixit [4] studied statistical inference for AR (1) process when the error follows MFTD.
Dixit [5] derived classical optimum tests of this MFTD. Shinde and Shanubhogue [6] also studied estimation
of parameters and the mean life of MFTD. Dixit [7] further studied estimation of parameters of this
distribution based on an extended modified sampling scheme.

A bivariate random variable (X, Y ) is said to have a bivariate exponential distribution (BVED) if
its marginals are exponential distributions. The concept of positive probability at instantaneous failure is
introduced to bivariate exponential distribution model as described by Gumbel [1] (referred as Gumbel’s
Type I bivariate exponential distribution)

G(x, y) = 1 − e−x − e−y + e−x−y−θxy; x ≥ 0, y ≥ 0, 0 ≤ θ ≤ 1, (1.3)
where θ is the parameter of association. When θ = 0 in (1.3), it is obvious that the random variables are
independent. Dixit and Karadkar [8] studied estimation of the parameters of the distribution function in
(1.3). Khare [9] has also obtained Bayes’ estimator of θ for squared error loss function. In Dixit et al.
[10] Bayes estimator of θ is obtained for squared error loss function and its bias and MSE are computed
for different values of sample size and θ.

If we consider a system of two components whose lifetimes follow Gumbel’s Type I bivariate exponential
distribution and there is a possibility of instantaneous failure in either of the components or instantaneous
failure in both the components together, then we can have a model as follows:

Introducing parameters p1 = P (X > 0) and p2 = P (Y > 0), 0 < p1 < 1, 0 < p2 < 1 in the
appropriate place in the distribution function (1.3) we obtain the new mixture distribution function as

F (x, y) = 1 − p1e
−x − p2e

−y + p1p2e
−x−y−θxy; x ≥ 0, y ≥ 0, 0 < p1, p2 < 1, 0 ≤ θ ≤ 1. (1.4)

This is Gumbel’s Type I bivariate exponential distribution with positive probability at instantaneous failure
(BVEDP).

Saju & Dixit [11] have studied the properties of (1.4).The marginal distribution function of X and Y

respectively are
F (x) = 1 − p1e

−x ; x ≥ 0, 0 < p1 < 1,

F (y) = 1 − p2e
−y ; y ≥ 0, 0 < p2 < 1,

which are exponential with positive probability (1 − p1) at X = 0, and (1 − p2) at Y = 0 respectively and
when p1 = p2 = 1 they are exponential distributions. It is obvious that when p1 = 1 and p2 = 1, (1.4)
reduces to (1.3) and it satisfies all the conditions of bivariate distribution function.

The corresponding mixed joint probability density function (pdf) of (1.4) is given by

f(x, y) =
[
(1 − p1)(1 − p2)

]I(x)I(y)[
(1 − p1)p2e

−y
]I(x)[1−I(y)]

[
(1 − p2)p1e

−x
][1−I(x)]I(y)[

p1p2e
−x−y−θxy

[
(1 + θx)(1 + θy) − θ

]][1−I(x)][1−I(y)]

; x ≥ 0, y ≥ 0, 0 < p1, p2 < 1, 0 ≤ θ ≤ 1 (1.5)
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which can also be written as

f(x, y) = (1 − p1)(1 − p2) = P (X = 0, Y = 0) ; x = 0, y = 0
= (1 − p1)p2e

−y ; x = 0, y > 0
= (1 − p2)p1e

−x ; x > 0, y = 0
= p1p2e

−x−y−θxy [(1 + θx)(1 + θy) − θ] ; x > 0, y > 0, 0 < p1, p2 < 1, 0 ≤ θ ≤ 1.

where I(t) = 1 if t = 0
= 0 if t > 0. (1.6)

Further, Saju and Dixit [11] have obtained Maximum likelihood estimators (MLE) of p1, p2 and θ of (1.4).
We have also studied finite sample and asymptotic properties of MLE, using simulation. In this paper we
obtain Bayes’ estimators of p1, p2 and θ of (1.4) for squared error loss function, assuming appropriate
conjugate prior distribution for p1, p2 and θ. Further, we have obtained bias and mean squared error
(MSE) of these Bayes estimators using simulation.

The bias and MSE of p̂1 and p̂2 are in closed form. Though Bayes estimator of θ appears in closed
form its bias and MSE cannot be obtained in closed form. Hence as a computational illustration, we
compute bias and MSE of the Bayes estimators of p1, p2 and θ using simulation which are presented in
Table 1. The Table is prepared for Simulation size N = 1000, sample sizes (n = 5, 10, 15), p1 = 0.5, (p2 =
0.5, 0.7 and 0.9) and (θ = 0.3, 0.7, 0.9). We consider a1 = 2, b1 = 3, a2 = 2, b2 = 3, c = 3, d = 2.

Bayesian inference is studied by various authors namely, Pathak et al [12] for Poisson inverse exponential
distribution (PIED). They have studied Bayesian and E-Bayesian estimators of parameters of PIED under
squared error loss function (SELF), General Entropy Loss function (GELF) and Linear Exponential Loss
function (LINEX) for progressive type-II censored data with binomial removals. Their risks are compared
using simulation. These methods are applied to survival time of multiple myeloma patient data.

In addition, Pathak et al. [13] have studied Bayesian inference for Weibull Poisson model for censored
data. They have considered estimation of parameters under progressive type-II censoring with binomial
removals. The MLE’s and Bayes estimators have been obtained under symmetric and asymmetric loss
functions. Further, their performance is compared using simulation. These methods are illustrated through
real bladder cancer data set.

2 Bayes’ estimators for the parameters of Gumbel’s Type I
bivariate exponential distribution with positive probability at
instantaneous failure

In this section we describe Bayes’ estimators of the parameters p1, p2 and θ for the pdf in (1.5).
Suppose {(x1, y1), (x2, y2), . . . , (xn, yn)} is a random sample of size n from mixed density function

given in (1.5). Let

n∑

i=1
I(xi)I(yi) = n1,

n∑

i=1
I(xi)[1 − I(yi)] = n2,

n∑

i=1
[1 − I(xi)]I(yi) = n3,

n∑

i=1
[1 − I(xi)][1 − I(yi)] = n4,

4∑

i=1
ni = n

I(.) is as defined in (1.6)
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It can be noted that (N1, N2, N3) follows multinomial distribution with pmf as follows:

P (N1 = n1, N2 = n2, N3 = n3) = n!(q1q2)n1(q1p2)n2(p1q2)n3(p1p2)n4

n1! n2! n3! n4!
(2.1)

where, q1 = 1 − p1, q2 = 1 − p2,

q1q2 + q1p2 + p1q2 + p1p2 = 1,

n1, n2, n3, n4 = 0, 1, 2, ..., n and
4∑

i=1
ni = n.

For the prior distribution we assume that p1 ∼ Beta(a1, b1), p2 ∼ Beta(a2, b2), θ ∼ Beta(c, d). Further,
we also assume that (x⃗, y⃗), p1, p2 and θ are independent. The joint distribution of (x⃗, y⃗, p1, p2 and θ) is
given as

f(x⃗, y⃗, p1, p2, θ) =
[

n∏

i=1
f(xi, yi)

]
.f1(p1).f2(p2).f3(θ)

where
n∏

i=1
f(x⃗, y⃗, p1, p2, θ) = (1 − p1)n1+n2 (1 − p2)n1+n3 pn3+n4

1 pn2+n4
2

e−
∑n3

i=1 xi−
∑n2

i=1 yi−
∑n4

i=1 xi−
∑n4

i=1 yi

e−θ
∑n4

i=1 xiyi

n4∏

i=1

[
(1 + θxi)(1 + θyi) − θ

]
from (1.5)

f1(p1) = pa1−1
1 (1 − p1)b1−1

β(a1, b1)
0 < p1 < 1,

f2(p2) = pa2−1
2 (1 − p2)b2−1

β(a2, b2)
0 < p2 < 1, and

f3(θ) = θc−1(1 − θ)d−1

β(c, d) 0 < θ < 1.

Hence

f(x⃗, y⃗, p1, p2, θ) = (1 − p1)n1+n2 (1 − p2)n1+n3 pn3+n4
1 pn2+n4

2

e−
∑n3

i=1 xi−
∑n2

i=1 yi−
∑n4

i=1 xi−
∑n4

i=1 yi

e−θ
∑n4

i=1 xiyi

n4∏

i=1

[
(1 + θxi)(1 + θyi) − θ

]

pa1−1
1 (1 − p1)b1−1

β(a1, b1)
pa2−1

2 (1 − p2)b2−1

β(a2, b2)
θc−1(1 − θ)d−1

β(c, d) ; n4 > 0

= (1 − p1)n1+n2 (1 − p2)n1+n3 pn3+n4
1 pn2+n4

2

e−
∑n3

i=1 xi −
∑n2

i=1 yi
pa1−1

1 (1 − p1)b1−1

β(a1, b1)
pa2−1

2 (1 − p2)b2−1

β(a2, b2)
θc−1(1 − θ)d−1

β(c, d) ; n4 = 0

; x, y ≥ 0, 0 < p1, p2 < 1, 0 ≤ θ ≤ 1, a1, b1, a2, b2, c, d > 0.

(2.2)

Let T3x =
n3∑

i=1
xi , T2y =

n2∑

i=1
yi , T4x =

n4∑

i=1
xi , T4y =

n4∑

i=1
yi , T4xy =

n4∑

i=1
xiyi (2.3)
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consider,
e−θ

∑n4
i=1 xiyi =

∞∑

i=0

(−1)i (θ T4xy)i

i! =
∞∑

i=0

(−T4xy)i θi

i! (2.4)

Consider

R =
n4∏

i=1

[
(1 + θxi) (1 + θyi) − θ

]

=
n4∏

i=1

[
1 + (xi + yi − 1) θ + xiyiθ

2
]

=
n4∏

i=1

[
1 + Aiθ + Biθ

2
]

where Ai = xi + yi − 1, Bi = xiyi

for n4 = 1

R = 1 + A1θ + B1θ
2

= C10 + C11θ + C12θ
2

where C10 = 1, C11 = A1, C12 = B1

for n4 = 2

R = (1 + A1θ + B1θ
2) (1 + A2θ + B2θ

2)
= 1 + (A1 + A2)θ + (B1 + A1A2 + B2)θ2 + (B1A2 + A1B2)θ3 + (B1B2)θ4

= 1 + (C11 + A2)θ + (C12 + C11A2 + C10B2)θ2

+ (C13 + C12A2 + C11B2)θ3 + (C14 + C13A2 + C12B2)θ4

= C20 + C21θ + C22θ
2 + C23θ

3 + C24θ
4

for n4 = n4

R = Cn4,0 + Cn4,1θ + Cn4,2θ
2 + Cn4,3θ

3 + . . . + Cn4,kθk + . . . Cn4,2n4θ2n4

where Cn4,0 = 1
Cn4,1 = Cn4−1,1 + An4

Cn4,k = Cn4−1,k + Cn4−1,k−1An4 + Cn4−1,k−2Bn4 ; (2 ≤ k ≤ 2n4)
and Cn4−1,2n4−1 = Cn4−1,2n4 = 0

) R =
2n4∑

j=0
Cn4,jθ

j (2.5)

Substituting (2.3), (2.4) and (2.5) in (2.2), we get the joint pdf as
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f(x⃗, y⃗, p1, p2, θ) = pn3+n4+a1−1
1 (1 − p1)n1+n2+b1−1

β(a1, b1)
pn2+n4+a2−1

2 (1 − p2)n1+n3+b2−1

β(a2, b2)

e−T3x−T2y−T4x−T4y

2n4∑

j=0

Cn4,jθ
j

β(c, d)

∞∑

i=0

(−T4xy)iθi

i! θc−1(1 − θ)d−1 ; n4 > 0

= pn3+n4+a1−1
1 (1 − p1)n1+n2+b1−1

β(a1, b1)
pn2+n4+a2−1

2 (1 − p2)n1+n3+b2−1

β(a2, b2)

e−T3x−T2y
θc−1(1 − θ)d−1

β(c, d) ; n4 = 0

x, y ≥ 0, 0 < p1, p2 < 1, 0 ≤ θ ≤ 1, a1, b1, a2, b2, c, d > 0.

To obtain Bayes’ estimators of p1, p2 and θ we proceed as follows:
The marginal pdf of x⃗, y⃗ is given by

f(x⃗, y⃗) =
∫ 1

0

∫ 1

0

∫ 1

0
f(x⃗, y⃗, p1, p2, θ) dp1 dp2 dθ

= e−T3x−T2y−T4x−T4y

β(a1, b1)β(a2, b2)β(c, d)

∫ 1

0
pn3+n4+a1−1

1 (1 − p1)n1+n2+b1−1 dp1

∫ 1

0
pn2+n4+a2−1

2 (1 − p2)n1+n3+b2−1 dp2

2n4∑

j=0
Cn4,j

∞∑

i=0

(−T4xy)i

i!

∫ 1

0
θi+j+c−1(1 − θ)d−1 dθ

= e−T3x−T2y−T4x−T4y

β(a1, b1)β(a2, b2)β(c, d) β(n3 + n4 + a1, n1 + n2 + b1)

β(n2 + n4 + a2, n1 + n3 + b2)
∞∑

i=0

2n4∑

j=0
Cn4,j β(i + j + c, d)(−T4xy)i

i!
if n4 > 0, x ≥ 0, y ≥ 0

0 < p1, p2 < 1, 0 ≤ θ ≤ 1, a1, b1, a2, b2, c, d > 0.

= e−T3x−T2y
β(n3 + a1, n1 + n2 + b1) β(n2 + a2, n1 + n3 + b2)

β(a1, b1) β(a2, b2)
if n4 = 0, x ≥ 0, y ≥ 0.

a1, b1, a2, b2 > 0

The joint posterior distribution h(p1, p2, θ | x⃗, y⃗) is

h(p1, p2, θ | x⃗, y⃗) = f(x⃗, y⃗, p1, p2, θ)
f(x, y)
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=





pn3+n4+a1−1
1 (1 − p1)n1+n2+b1−1

β(a1, b1)
pn2+n4+a2−1

2 (1 − p2)n1+n3+b2−1

β(a2, b2)

e−T3x−T2y−T4x−T4y

2n4∑

j=0
Cn4,j

(∑∞
i=0(−1)i T4xy

i

i!

)
θi+j+c−1 (1 − θ)d−1

β(c, d)

e−T3x−T2y−T4x−T4y
β(n3 + n4 + a1, n1 + n2 + b1)

β(a1, b1)
β(n2 + n4 + a2, n1 + n3 + b2)

β(a2, b2)
2n4∑

j=0

Cn4,j

β(c, d)

∞∑

c=0

(−1)iT4xy
i

i! β(i + j + c, d)

which is equal to

pn3+n4+a1−1
1 (1 − p1)n1+n2+b1−1 pn2+n4+a2−1

2 (1 − p2)n1+n3+b2−1

2n4∑

j=0
Cn4,j

∞∑

i=0

(−T4xy)i

i! θi+j+c−1 (1 − θ)d−1

β(n3 + n4 + a1, n1 + n2 + b1) β(n2 + n4 + a2, n1 + n3 + b2)
2n4∑

j=0
Cn4,j

∞∑

i=0

(−T4xy)i

i! β(i + j + c, d)

if n4 > 0, x ≥ 0, y ≥ 0, 0 < p1, p2 < 1, 0 ≤ θ ≤ 1
a1, b1, a2, b2, c, d > 0





=





pn3+n4+a1−1
1 (1 − p1)n1+n2+b1−1

β(n3 + a1, n1 + n2 + b1)
pn2+n4+a2−1

2 (1 − p2)n1+n3+b2−1

β(n2 + a2, n1 + n3 + b2)
θc−1(1 − θ)d−1

β(c, d)
if n4 = 0, 0 < p1, p2 < 1, a1, b1, a2, b2 > 0.

The marginal posterior pdf of p1, p2 and θ given (x⃗, y⃗) are respectively given as follows:

h(p1 | x⃗, y⃗) =
∫ 1

0

∫ 1

0
h(p1, p2, θ | x⃗, y⃗) dp2 dθ

which on simplification

= pn3 + n4 + a1 − 1
1 (1 − p1)n1 + n2 + b1 − 1

β(n3 + n4 + a1, n1 + n2 + b1)
; n4 ≥ 0, 0 < p1 < 1, a1, b1 > 0

similarly

h(p2 | x⃗, y⃗) = pn2 + n4 + a2 − 1
2 (1 − p2)n1 + n3 + b2 − 1

β(n2 + n4 + a2, n1 + n3 + b2)
; n4 ≥ 0, 0 < p2 < 1, a2, b2 > 0
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and similarly

h(θ | x⃗, y⃗) =
∫ 1

0

∫ 1

0
h(p1, p2, θ | x⃗, y⃗) dp1 dp2

=

2n4∑

j=0
Cn4,j

∞∑

i=0

(−T4xy)i

i! θi+j+c−1 (1 − θ)d−1

2n4∑

j=0
Cn4,j

∞∑

i=0

(−T4xy)i

i! β(i + j + c, d)

; n4 > 0, x ≥ 0, y ≥ 0, 0 ≤ θ ≤ 1, c, d > 0.

= 1 ; n4 = 0.

It is well known that if the loss function is squared error, then the Bayes estimator is a mean of the
posterior distribution.

Thus, Bayes’ estimator for p1 and p2 are given as follows:

p̂1 =
∫ 1

0
p1 h(p1 | x⃗, y⃗) dp1 = n3 + n4 + a1

n + a1 + b1

p̂2 =
∫ 1

0
p2 h(p2 | x⃗, y⃗) dp2 = n2 + n4 + a2

n + a2 + b2

and Bayes’ estimator for θ is given as follows:

θ̂ = E(θ | x⃗, y⃗) =
∫ 1

0
θ h(θ | x⃗, y⃗) dθ

=

2n4∑

j=0
Cn4,j

∞∑

i=0

(−1)iT4xy
i

i!

∫ 1

0
θi+j+c+1−1(1 − θ)d−1 dθ

2n4∑

j=0
Cn4,j

∞∑

i=0

(−1)iT4xy
i

i! β(i + j + c, d)

=

2n4∑

j=0
Cn4,j

∞∑

i=0

(−1)iT4xy
i

i! β(i + j + c + 1, d)

2n4∑

j=0
Cn4,j

∞∑

i=0

(−1)iT4xy
i

i! β(i + j + c, d)

=

2n4∑

j=0
Cn4,j

∞∑

i=0

(−T4xy)i

i!
Γ(i + j + c + 1)Γ(d)
Γ(i + j + c + d + 1)

2n4∑

j=0
Cn4,j

∞∑

i=0

(−T4xy)i

i!
Γ(i + j + c)Γ(d)
Γ(i + j + c + d)

Multiplying and dividing numerator by Γ(j + c + 1)
Γ(j + c + d + 1)

and multiplying and dividing denominator by Γ(j + c)
Γ(j + c + d)we get,
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=

2n4∑

j=0
Cn4,j

Γ(j + c + 1)
Γ(j + c + d + 1)

∞∑

i=0

Γ(i + j + c + 1)Γ(j + c + d + 1)
Γ(j + c + 1)Γ(i + j + c + d + 1)

(
−T4xy

i

i!

)

2n4∑

j=0
Cn4,j

Γ(j + c)
Γ(j + c + d)

∞∑

i=0

Γ(i + j + c)Γ(j + c + d)
Γ(j + c)Γ(i + j + c + d)

(
−T4xy

i

i

)

=

2n4∑

j=0
Cn4,j

Γ(j + c + 1)
Γ(j + c + d + 1) 1F1

(
j + c + 1; j + c + d + 1; −T4xy

)

2n4∑

j=0
Cn4,j

Γ(j + c)
Γ(j + c + d) 1F1

(
j + c; j + c + d; −T4xy

) ; n4 > 0

θ̂ =
∫ 1

0

θ θc−1(1 − θ)d−1

β(c, d) dθ = c

c + d
; if n4 = 0

where, 1F1 is called a confluent hypergeometric function and is computed in Abramouitz and Stegun
[14] or can be computed using “hypergeometric 1F19a,b,c)” in R code.

The bias and MSE of the Bayes estimator p̂1 are as follows:
From (2.1) it is clear that (N3 + N4) ∼ Binomial (n, p1q2 + p1p2 = p1). Hence,

E(p̂1) = E

(
n3 + n4 + a1

n + a1 + b1

)
= np1 + a1

n + a1 + b1

V (p̂1) = V

(
n3 + n4 + a1

n + a1 + b1

)
= np1q1

(n + a1 + b1)2

Thus, the bias of p̂1 is

Bias(p̂1) = E(p̂1) − p1 = np1 + a1

n + a1 + b1
− p1 = a1q1 − b1p1

n + a1 + b1
(2.6)

and MSE(p̂1) = V (p̂1) +
[
bias(p̂1)

]2
= np1q1 + (a1q1 − b1p1)2

(n + a1 + b1)2 (2.7)

Similarly,
Bias(p̂2) = a2q2 − b2p2

n + a2 + b2
(2.8)

and MSE(p̂2) = np2q2 + (a2q2 − b2p2)2

(n + a2 + b2)2 (2.9)

Thus, the bias and MSE of p̂1 and p̂2 are in closed form. Though Bayes estimator of θ appears in
closed form its bias and MSE cannot be obtained in closed form. Hence as a computational illustration,
we compute bias and MSE of the Bayes estimators of p1, p2 and θ using simulation which are presented in
Table 1. The Table is prepared for Simulation size N = 1000, sample sizes (n = 5, 10, 15), p1 = 0.5, (p2 =
0.5, 0.7 and 0.9) and (θ = 0.3, 0.7, 0.9). We consider a1 = 2, b1 = 3, a2 = 2, b2 = 3, c = 3, d = 2.

From Table 1, it is seen that bias and MSE of p̂1 and p̂2 decreases as n increases for all values of θ.
However, bias and MSE of θ̂ decreases as n increases for the values of θ near to zero (0.3) or near to
1(0.9) but for central values (0.7) of θ both bias and MSE are smaller with slight fluctuation.
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3 Tables

Table 1: Bias and Mean squared error for the Bayes estimators of p1, p2 and θ of BVEDP (p1, p2, 1, 1, θ).
Simulation size, N = 1000. a1 = 2, b1 = 3, a2 = 2, b2 = 3, c = 3, d = 2.

n Bias(p1) Bias(p2) Bias(θ) MSE(p1) MSE(p2) MSE(θ)
p1 = 0.5, p2 = 0.5, θ = 0.3
5 -0.0461 -0.0581 0.2943 0.0146 0.0158 0.0877
10 -0.0327 -0.0388 0.2889 0.0126 0.0127 0.0854
15 -0.0309 -0.0274 0.2822 0.0109 0.0099 0.0830
p1 = 0.5, p2 = 0.5, θ = 0.7
5 -0.0438 -0.0528 -0.0982 0.0145 0.0148 0.0103
10 -0.0350 -0.0318 -0.0972 0.0124 0.0121 0.0106
15 -0.0267 -0.0252 -0.0941 0.0097 0.0103 0.0106
p1 = 0.5, p2 = 0.5, θ = 0.9
5 -0.0494 -0.0473 -0.2943 0.0145 0.0146 0.0870
10 -0.0354 -0.0349 -0.2889 0.0128 0.0119 0.0844
15 -0.0226 -0.0258 -0.2865 0.0096 0.0103 0.0835
p1 = 0.5, p2 = 0.7, θ = 0.3
5 -0.0459 -0.1461 0.2911 0.0152 0.0314 0.0866
10 -0.0293 -0.1017 0.2858 0.0129 0.0204 0.0846
15 -0.0246 -0.0731 0.2761 0.0113 0.0128 0.0807
p1 = 0.5, p2 = 0.7, θ = 0.7
5 -0.0430 -0.1499 -0.0957 0.0140 0.0327 0.0100
10 -0.0349 -0.1041 -0.0940 0.0128 0.0198 0.0105
15 -0.0260 -0.0748 -0.0929 0.0106 0.0136 0.0107
p1 = 0.5, p2 = 0.7, θ = 0.9
5 -0.0517 -0.1470 -0.2941 0.0149 0.0317 0.0871
10 -0.0316 -0.1001 -0.2856 0.0121 0.0194 0.0829
15 -0.0272 -0.0752 -0.2800 0.0101 0.0142 0.0801
p1 = 0.5, p2 = 0.9, θ = 0.3
5 -0.0519 -0.2490 0.2898 0.0152 0.0663 0.0860
10 -0.0271 -0.1685 0.2781 0.0122 0.0326 0.0818
15 -0.0287 -0.1251 0.2702 0.0104 0.0191 0.0787
p1 = 0.5, p2 = 0.9, θ = 0.7
5 -0.0492 -0.2502 -0.0954 0.0146 0.0671 0.0100
10 -0.0323 -0.1689 -0.0896 0.0112 0.0326 0.0097
15 -0.0234 -0.1237 -0.0917 0.0102 0.0184 0.0115
p1 = 0.5, p2 = 0.9, θ = 0.9
5 -0.0463 -0.2494 -0.2920 0.0148 0.0667 0.0862
10 -0.0325 -0.1633 -0.2842 0.0122 0.0304 0.0823
15 -0.0237 -0.1235 -0.2750 0.0103 0.0187 0.0777

4 Conclusion
In this paper we have obtained Bayes estimators p̂1, p̂2 and θ̂ for squared error loss function for the
parameters of Gumbel’s (1960) type-I bivariate exponential distribution with positive probability at
instantaneous failure given in (1.4). bias, MSE and Bayes risk of p̂1 and p̂2 are also obtained, which
are in closed form. Though θ̂ is in closed form, its bias, MSE and Bayes risk are difficult to obtain,
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analytically. Hence a simulation study is carried out and tables are prepared for bias and MSE of p̂1, p̂2
and θ̂.
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Abstract
A necessary and sufficient condition for a block design D(v, b, r, k) to have a cyclic or partial cyclic solution is
obtained. A 5–resolvable solution of regular group divisible design R152a : v = 22, r = 10, k = 5, b = 44,
λ1 = 0, λ2 = 2, m = 11, n = 2 is also obtained using circulant matrices. This solution is not reported in [16].
Keywords: Cyclic and Partial cyclic solutions; Circulant matrices; Regular group divisible design; Resolvability

1 Introduction
Cyclic and partial cyclic solutions of two associate classes partially balanced incomplete block designs
(PBIBDs) have been reported by Clatworthy [2] under the range of 2 ≤ r ≤ 10 whenever possible. Later
Hall [15] reported cyclic and partial cyclic solutions of balanced incomplete block designs (BIBDs) under
the range of 3 ≤ r ≤ 20; k ≤ v/2 using automorphism. A recent survey on cyclic and partial cyclic
solutions of block designs under the range of r, k ≤ 10 may be found in [21]. They reported cyclic
and partial cyclic solutions of block designs with higher efficiencies for the same v, b, r, k available in the
literature. We go for partial solution of a block design D(v, b, r, k) when cyclic solution is not available
for the same v, b, r, k.

Partial cyclic solutions of block designs have been studied by Dey and Nigam [8], Mukerjee et al.
[12], Dey et al. [7], Midha et al. [17], Saurabh [20], among others and for details on cyclic solutions,
see [11], [12], [14], [15], [18], [19] and [24]. Generalized cyclic designs are further generalization of
cyclic and partial cyclic designs, see [10].

2 Definitions
For the definitions of balanced incomplete block design, group divisible (GD) design and triangular design,
see [6], [5], [22]. Some other relevant definitions in context of the paper are as follows:

Cyclic and partial cyclic designs
A block design D(v, b, r, k) is cyclic if its solution may be obtained by adding the elements of a cyclic
group Zv = {0, 1, 2, . . . , v}modv to the initial blocks of the design whereas a design is partial cyclic
if its solution may be obtained by developing the initial blocks under a partial cycle: 1 ↔ q, q + 1 ↔
2q, . . . , [q(p − 1) + 1] ↔ v = pq of length q where (1 ↔ q) ↔ 1 → 2, 2 → 3, . . . , (q − 1) → q, q → 1.

Example 1. A cyclic solution of the BIBD: v = b = 7, r = k = 3, λ = 1 can be obtained by developing
the initial block (1, 2, 4) under addition modulo 7.

© 2024 Author(s). (https://www.thegsa.in/).
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Example 2. A partial cyclic solution the GD design R80 : v = 14, r = 9, k = 3, b =
42, λ1 = 6, λ2 = 1, m = 7, n = 2 may be obtained by developing the initial blocks:
(1, 2, 8); (1, 8, 9); (1, 3, 8); (1, 8, 10); (1, 4, 8); (1, 8, 11) under a partial cycle 1 ↔ 7, 8 ↔ 14 of length
7 [see [2]].

Circulant matrix
An n × n matrix C = [cij](0≤i,j≤n−1) where cij = cj−i(modn) is called a circulant matrix of order n

i. e. C =




c0 c1 c2 . . . cn−1
cn−1 c0 c1 . . . cn−2
cn−2 cn−1 c0 . . . cn−3

... ... ... . . . ...
c1 c2 c3 . . . c0




= circ(c0, c1, . . . , cn−1).

Clearly the elements of each row of C are identical to those of the previous row but are moved one
position to the right and wrapped around anti-clockwise. It is easy to verify that a circulant matrix may
also be generated using the first column by shifting the elements downword and wrapped around at the
top. For details on circulant matrices, see [3].

Resolvable design
A block design D(v, b, r, k) is α-resolvable if its incidence matrix N may be partitioned in to submatrices
as: N = (N1|N2| . . . |Nt) where each Ni(1 ≤ i ≤ t) is a v × vα/k matrix such that each row sum of Ni

is α and for α = 1, the design is resolvable.
Notations: In is the identity matrix of order n, α = circ(010 . . . 0) is a circulant matrix of order n such
that αn = In and v|b denotes v divides b.

3 A necessary and sufficient condition
Theorem 1. (a) If the incidence matrix of a block design D(v, b, r, k) may be partitioned into circulant
submatrices of order q where q|v, q|b then the design has a partial cyclic solution.

(b) A block design D(v, b, r, k) has a cyclic solution if and only if its incidence matrix may be partitioned
into circulant submatrices of order v(v|b).

Proof. Suppose the incidence matrix N of a block design D(v, b, r, k) may be partitioned as:

N = [Nij]1≤i≤s
1≤j≤t

=




N11 N12 . . . N1t

N21 N22 . . . N2t
... ... . . . ...

Ns1 Ns2 . . . Nst




= (M1|M2| . . . |Mt),

where each Nij is a circulant matrix of order q such that q|v, q|b and Mi =




N1i

N2i
...

Nsi




(1 ≤ i ≤ t). Clearly

each Nij can be obtained using its first column by shifting the elements downward and wrapped around
at the top. Since the ones in first column of N11, N21, . . . , Ns1 correspond to the number of treatments
in the block B1 (say), all the remaining (q − 1) blocks corresponding to M1 can be developed under the
partial cycle 1 ↔ q, (q + 1) ↔ 2q, . . . , q(p − 1) + 1 ↔ v = pq of length q which is the size of each Nij.
The same argument applies to the block matrices M2, M3, . . . , Mt. Hence the design has a partial cyclic
solution.
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Further suppose that the incidence matrix N of a block design D(v, b, r, k) may be partitioned as:
N = (M1|M2| . . . |Mt); b = tv where each Mi(1 ≤ i ≤ t) is a circulant matrix of order v, then the design
has clearly a cyclic solution.

Conversely if a cyclic design is obtained by developing the initial blocks: (θ1
1, θ1

2, . . . , θ1
k);

(θ2
1, θ2

2, . . . , θ2
k);. . . , (θt

1, θt
2, . . . , θt

k)(modv) then its incidence matrix N may be expressed as: N =
(αθ1

1 + αθ1
2 + · · · + αθ1

k |αθ2
1 + αθ2

2 + · · · + αθ2
k | . . . |αθt

1 + αθt
2 + · · · + αθt

k), where α = circ(010 . . . 0)
is circulant matrix of order v such that αv = Iv.

Example 3. A cyclic solution of the GD design R83 : v = 15, r = 9, k = 3, b = 45, λ1 = 2, λ2 = 1, m =
3, n = 5 is obtained by developing the initial blocks: [(1, 7, 13); (1, 4, 5); (1, 3, 8)](mod15) [see [2]]. Then
its incidence matrix is given as: N = (α + α7 + α13|α + α4 + α5|α + α3 + α8), where α = circ(010 . . . 0)
is circulant matrix of order 15 such that α15 = I15 which may be easily verified.

Example 4. A cyclic solution of the BIBD with parameters: v = 41, r = 10, k = 5, b = 82, λ = 1 is
obtained be developing the initial blocks [(1, 10, 16, 18, 37); (5, 8, 9, 21, 39)](mod41), see [15]. Then its
incidence matrix may be expressed as: N = (α + α10 + α16 + α18 + α37|α5 + α8 + α9 + α21 + α39), where
α = circ(010 . . . 0) is circulant matrix of order 41 such that α41 = I41which may be easily verified.

4 A 5-resolvable regular group divisible design
A 5-resolvable solution of R152a [see [9]] using circulant matrices is presented below. This solution is
not reported in [16]. R152a : v = 22, r = 10, k = 5, b = 44, λ1 = 0, λ2 = 2, m = 11, n = 2.

N =
(

α + α2 + α3 + α6 α9 α + α3 + α8 α2 + α10

α9 α + α2 + α3 + α6 α2 + α10 α + α3 + α8

)
=
(
S|T

)
,

where α = circ(010 . . . 0) is circulant matrix of order 11 such that α11 = I11. Since each row sum of
partitioned block matrices S and T is 5, the design is 5– resolvable. The resolution classes are given
below. The blocks can be obtained by developing the initial blocks under a partial cycle 1 ↔ 11,12 ↔ 22
of length 11:

No. Resolution Classes Initial blocks
1 RI (6, 9, 10, 11, 14); (3, 17, 20, 21, 22)
2 RII (4, 9, 11, 13, 21); (2, 10, 15, 20, 22)

Table 1: Partial cyclic solution of R152a

The complete solution is as given below:
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Resolution I Resolution II

(6, 9, 10, 11, 14); (3, 17, 20, 21, 22) (4, 9, 11, 13, 21); (2, 10, 15, 20, 22)
(7, 10, 11, 1, 15); (4, 18, 21, 22, 12) (5, 10, 1, 14, 22); (3, 11, 16, 21, 12)
(8, 11, 1, 2, 16); (5, 19, 22, 12, 13) (6, 11, 2, 15, 12); (4, 1, 17, 22, 13)
(9, 1, 2, 3, 17); (6, 20, 12, 13, 14) (7, 1, 3, 16, 13); (5, 2, 18, 12, 14)
(10, 2, 3, 4, 18); (7, 21, 13, 14, 15) (8, 2, 4, 17, 14); (6, 3, 19, 13, 15)
(11, 3, 4, 5, 19); (8, 22, 14, 15, 16) (9, 3, 5, 18, 15); (7, 4, 20, 14, 16)
(1, 4, 5, 6, 20); (9, 12, 15, 16, 17) (10, 4, 6, 19, 16); (8, 5, 21, 15, 17)
(2, 5, 6, 7, 21); (10, 13, 16, 17, 18) (11, 5, 7, 20, 17); (9, 6, 22, 16, 18)
(3, 6, 7, 8, 22); (11, 14, 17, 18, 19) (1, 6, 8, 21, 18); (10, 7, 12, 17, 19)
(4, 7, 8, 9, 12); (1, 15, 18, 19, 20) (2, 7, 9, 22, 19); (11, 8, 13, 18, 20)
(5, 8, 9, 10, 13); (2, 16, 19, 20, 21) (3, 8, 10, 12, 20); (1, 9, 14, 19, 21)

The 11 × 2 GD scheme is given as transpose of the array:

1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22

5 Conclusion
In this note a necessary and sufficient condition for a block design D(v, b, r, k) to have a cyclic solution is
obtained whereas only a sufficient condition for a block design D(v, b, r, k) to have a partial cyclic solution
is obtained using circulant matrices. The cyclic and partial cyclic solutions of designs are important from
statistical point of view. Cyclic designs can be used for partial confounding in factorial experiments and
in the constructions of LDPC codes [see [13], [4] and [25]].

The incidence matrices of all the cyclic group divisible designs given in [2], [9] and the cyclic BIBDs
given in [15] may be easily written using circulant matrices. It would be interesting to generate the
incidence matrix of a partial cyclic design using initial blocks and circulant matrices. A 5–resolvable solution
of regular group divisible design R152a : v = 22, r = 10, k = 5, b = 44, λ1 = 0, λ2 = 2, m = 11, n = 2 is
also obtained. This solution is not reported in [16].

Saurabh and Sinha [23] obtained some series of L2-type designs using circulant matrices. Their
solutions may also be put in partial cyclic form. Cyclic solutions of triangular and L2-type designs are
not available in the literature, see [2], [21] and elsewhere. It would be interesting to obtain some series
of cyclic triangular and L2-type designs however a generalized cyclic solution of the triangular design
T9 : v = b = 10, r = k = 3, λ1 = 1, λ2 = 0, n1 = 6, n2 = 3 is reported in [1]. The solution is obtained
by adding 0, 2, 4, 6, 8 successively to the initial blocks (0, 3, 7), (2, 3, 4) where the corresponding triangular
scheme is represented as:

* 0 1 7 8
0 * 2 3 9
1 2 * 4 5
7 3 4 * 6
8 9 5 6 *

.
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Abstract
Compatibility of conditional distributions in the discrete case has been adequately discussed, see [1, 3], [8], [9]
and the references cited therein. However, not much has been discussed on the issue of compatibility between
two or more probability distributions which are absolutely continuous in nature, except in [5]Arnold and Gokhale
(1999, 2000) and in [1]. In this paper, simple results for compatibility between two conditional densities are
provided in the form of theorem(s) and proof(s). In higher dimension (say, dimension 4) and in more general,
m ≥ 5 dimension joint distribution compatibility is discussed. Several of these results have been independently
observed in [11] but no formal proofs are provided. This plays a major motivation for this article.
Keywords: Compatible conditionals; conditional densities.

1 Introduction
Identification of joint distributions by means of conditional densities has received considerable attention
in the last decade or so. Among several potential applications, prominent applications can be found in
the area of model building in classical statistical settings and in the elicitation and construction of a
multiparameter prior distributions in Bayesian scenarios. For example suppose that Y = (Y1, Y2, · · · , Yp)
is a p-dimensional random vector taking on values in the finite range set Y1 × Y2 × · · · × Yp where Y i

denote the possible values of Yi, i = 1, 2, · · · , p. Efforts to ascertain an appropriate distribution for Y
frequently involve acceptance or rejection of a series of bets about the stochastic behavior of Y . Suppose
that in this situation we are facing a question of whether or not to accept with odds 7 to 1 a bet that Y1
is equal to 1. Then if we accept the bet then it puts a bound on the probability that Y =1. Discussion
regarding compatibility under the discrete set-up has been adequately discussed in the literature. For
example, Arnold and his co-authors in a series of papers (see, [3, 2, 1], [6] have discussed the theory
and methodology related to compatibility of two discrete conditional distributions and in higher dimension
with potential limitations in studying in higher dimension. Several other researchers have also looked into
this problem, and some useful discussions can be found in the works of [7], [9], [10] and the references
cited therein. However, not much discussion has been made in this direction when the conditionals are
in the continuous domain. To the best of the authors’ knowledge, two most notable references would be
the paper by [4]; the books by [1] and [11] in which specific chapters have been devoted to address this
matter. This paper frequently cites these two books as the results that presented in the form of theorem
and proof structure can be found as statements and/or open problems that are left to readers to explore
(except for the theorem and proof when the dimension is 4). This plays a major motivation for this article.
The remainder of this paper is organized as follows. In Section 2 we provide some useful preliminaries
related to measures of divergence. In Section 3 we provide the main result in which details of the proofs
related to the several theorems related to the notion of compatibility in the bivariate, fourth dimension,

© 2024 Author(s). (https://www.thegsa.in/).
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and in general m-variate (m ≥ 5) are given. Some illustrative examples are provided in Section 4. Finally,
some concluding remarks are presented in Section 5.

2 Useful preliminaries
Here we begin our discussion on the theory of compatibility of two conditional densities in the bivariate
set-up. An extension to the higher dimension can certainly be envisioned albeit notational complexity
which will be discussed in a separate article. Suppose that (X, Y ) be an absolutely continuous bivariate
random variable with respect to some product measure ν1 ×ν2, on S(X)×S(Y ), where S(X) (and S(Y ))
denotes the support set of X(Y ). For the sake of our discussion, one may assume S(X) = S(Y ) ∈ R.
Next, we denote with families of candidate conditional densities (with respect to the measure ν1 × ν2) by

a (x, y) = fX|Y (x|y) , x ∈ S(X), y ∈ S(Y ), (1)
and

b (x, y) = fY |X (y|x) , x ∈ S(X), y ∈ S(Y ), (2)
In addition, we defined the incidence sets by writing the following
Wa = {(x, y) : a (x, y) > 0, Wb = {(x, y) : b (x, y) > 0. Then, according to Arnold et al. (1999),

Theorem 1.2 (pp8), a joint density f (x, y) , with a (x, y) and b (x, y) as its conditional densities, will exist
if and only if:

• Wa = Wb = W, say, the common incidence set,

• there exist functions, say, u and v such that for all (x, y) ∈ W

a (x, y)
b (x, y) = u(x)

v(y) , (3)

where ∫S(X) u(x)dν1(x) < ∞.

Regarding the proof of this theorem, see [1]. We will utilize this theorem in Section 4 to discuss some
examples in this regard. It is to be noted that there are several different forms of the given condition in
Eq. (3) exist in the literature, see [11], [7] and the references cited therein.

3 Main Result
We begin this section with the following theorem.
Theorem 1. Let (X, Y ) be a bivariate random variable with joint p.d.f. f (x, y) . Let f (x|y) and f (y|x)
be the conditional densities f (x|y) of X given Y = y, and Y given X = x, respectively. Then,

(a) If f (x0|y) > 0, for all y, then

f (x, y) ∝ f (x|y) f (y|x0)
f (x0|y)

this result holds under the assumption that the conditional densities f (x|y) are given for all y, and
f (y|x0) is given for a particular fixed value of X = x0. Therefore, it can be said that for any two
absolutely continuous random variables, the set of conditional densities given one variable, and the
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other conditional density uniquely determines the associated bivariate probability distribution. This
assertion has been independently obtained by [11], [1] .

The next result on compatible conditional densities (in the bivariate case as well) holds under the
assumption that the conditional densities of f (.|y) are available for all y, and vice versa. Then we
have the following result.

(b) A sufficient condition for f (x|y) and f (y|x) to be compatible with a joint density for (X, Y ) is
that

f (x2|y) f (y|x1)
f (x1|y) f (y|x2)

does not depend on y for any choice of (x1, x2) such that x1 ̸= x2.

Proof. For part [a], we start from the right hand side

f (x|y) f (y|x0)
f (x0|y) = f (x, y)

g(y) × f (x0, y)
f1(x0)

× g(y)
f (x0, y)

= f (x|y)
f1(x0)

∝ f (x|y) , (4)

where g(y) represents the marginal density of Y and f1(x) represents the marginal density of X. Hence,
the proof.
For part [b], we also start from the right hand side of the given expression. On simplifying and doing some
basic algebra, it can be written as

f (x2|y) f (y|x1)
f (x1|y) f (y|x2)

= h(x2)
h(x1)

,

which doesn’t depend on y for any choices of (x1, x2) such that x1 ̸= x2. This completes the proof.

As a natural extension, compatibility in the multivariate scenario can also be represented in the form of
the following theorem (as necessary and sufficient conditions). At first we provide the sketch of a proof
in case the dimension is four.

Theorem 2. Suppose, the conditional densities of f1|234 (.|y, z, w) are defined for all y, z, w;
f2|134 (.|x0, z, w) are defined for all y, w and fixed X = x0; f3|124 (.|x0, y, w0) are defined for all y and
fixed X = x0, W = w0; f4|123 (.|x0, y0, z0) are defined for fixed X = x0, Y = y0, Z = z0.

Furthermore, assume that f1|234 (x0|y, z, w) > 0 for all y, z, w; f2|134 (y0|x0, z, w) > 0 for all z, w; and
f3|124 (z0|x0, y0, w) > 0 for all w.

(a) Then, the joint density of X, Y, ZandW can be written as
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f1|234 (x, y, z, w) ∝

[
f1|234 (x|y, z, w) f2|134 (y|x0, z, w) f3|124 (z|x0, y, w0) f4|123 (w|x0, y0, z0)

]

[
f1|234 (x0|y, z, w) f2|134 (y0|x0, z, w) f3|124 (z0|x0, y0, w)

] .

(5)
with the proportionality constant equal to f123 (x0, y0, z0) .

(b) If the conditional densities of f1|234 (.|y, z, w) are defined for all y, z, w; f2|134 (.|x, z, w) are defined
for all x, z, w; f3|124 (.|x, y, w) are defined for all x, y, w; and f4|123 (.|x, y, z) are defined or all x, y, z;
then a condition for compatibility is that

[
f1|234 (x|y, z, w) f2|134 (y|x1, z, w) f3|124 (z|x1, y1, w) f4|123 (w|x1, y1, z1)

f1|234 (x1|y, z, w) f2|134 (y1|x1, z, w) f3|124 (z1|x1, y1, w) f4|123 (w1|x1, y1, z1)

]

×
[

f1|234 (x2|y, z, w) f2|134 (y2|x1, z, w) f3|124 (z2|x2, y2, w) f4|123 (w2|x2, y2, z2)
f1|234 (x|y, z, w) f2|134 (y|x2, z, w) f3|124 (z1|x2, y2, w) f4|123 (w|x2, y2, z2)

]
(6)

does not depend on x, y, z, w for all choices of (x1, y1, z1, w1) ̸= (x2, y2, z2, w2) .

Proof. For part [a], consider the right hand side of the expression:

[
f1|234 (x|y, z, w) f2|134 (y|x0, z, w) f3|124 (z|x0, y, w0) f4|123 (w|x0, y0, z0)

]

[
f1|234 (x0|y, z, w) f2|134 (y0|x0, z, w) f3|124 (z0|x0, y0, w)

]

=
{

f1234 (x, y, z, w)
g1 (y, z, w)

}
×
{

f1234 (x0, y, z, w)
g2 (x0, z, w)

}
×
{

f1234 (x0, y0, z0, w)
g3 (x0, y0, w)

}
×
{

f1234 (x0, y0, z0, w)
g4 (x0, y0, z0)

}

×
{

g1 (y, z, w)
f1234 (x0, y, z0, w)

}
×
{

g2 (x0, z, w)
f1234 (x0, y0, z, w)

}
×
{

g3 (x0, y0, w)
f1234 (x0, y0, z0, w)

}

= f1234 (x, y, z, w)
g4 (x0, y0, z0)

∝ f1234 (x, y, z, w)

Hence, the proof.
For part [b], again, let us consider the right hand side of the expression:

[
f1|234 (x|y, z, w) f2|134 (y|x1, z, w) f3|124 (z|x1, y1, w) f4|123 (w|x1, y1, z1)

f1|234 (x1|y, z, w) f2|134 (y1|x1, z, w) f3|124 (z1|x1, y1, w) f4|123 (w1|x1, y1, z1)

]

×
[

f1|234 (x2|y, z, w) f2|134 (y2|x1, z, w) f3|124 (z2|x2, y2, w) f4|123 (w2|x2, y2, z2)
f1|234 (x|y, z, w) f2|134 (y|x2, z, w) f3|124 (z1|x2, y2, w) f4|123 (w|x2, y2, z2)

]

= f1234 (x2, y2, z2, w2)
f1234 (x1, y1, z1, w1)

,
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after some simple algebra.
which implies that the expression does not depend on x, y, z, w for all choices of (x1, y1, z1, w1) ̸=
(x2, y2, z2, w2) . Hence, the proof.

In the next, we provide a more general theorem which is an extension to the multivariate case (say,
dimension m, where m ≥ 5). The theorem has been originally mentioned in Joe (1997), however, the
proof was not provided. We provide the proof here by stating the theorem in a slightly different manner.
Theorem 3. Let (Y1, Y2, · · · , Ym) be a random variable with joint probability density function
f1,2,··· ,m (y1, y2, · · · , ym). Denote by fi|r (yi|yr) to be the conditional density of Yi given the remaining
variables Yj, j ̸= i. Then,

(a) It can be shown that

f (y1, y2, · · · , ym) ∝
∏m

i=1 fi|r
(
yi|y0

1, · · · , y0
i−1, yi+1, · · · , ym

)

∏m
i=1 fi|r (y0

i |y0
1, · · · , y0

i−1, yi+1, · · · , ym) .

for a given vector, say, y0 = (y0
1, y0

2, · · · , y0
m) for which all the conditional densities in the above

expression are positive.

(b) The conditional densities f
(
yi|y(r)

)
, i = 1, 2, · · · , m are compatible if the expression



∏m

i=1 fi|(r)
(
yi|y0

1, · · · , y0
i−1, yi+1, · · · , ym

)

∏m
i=1 fi|(r) (y0

i |y0
1, · · · , y0

i−1, yi+1, · · · , ym)


×



∏m

i=1 fi|(r)
(
z0

i |z0
1 , · · · , z0

i−1, yi+1, · · · , ym

)

∏m
i=1 fi|(r) (yi|z0

1 , · · · , z0
i−1, yi+1, · · · , ym)




does not depend on (y1, y2, · · · , ym) for (y0
1, y0

2, · · · , y0
m) ̸= (z0

1 , z0
2 , · · · , z0

m) .

Proof. For part [a], it is simple and thus excluded. For part [b], let us consider the right hand side of the
expression

[∏m
i=1 fi|(r)

(
yi|y0

1, · · · , y0
i−1, yi+1, · · · , ym

)

∏m
i=1 fi|(r) (y0

i |y0
1, · · · , y0

i−1, yi+1, · · · , ym)

]
×
[∏m

i=1 fi|(r)
(
z0

i |z0
1 , · · · , z0

i−1, yi+1, · · · , ym

)

∏m
i=1 fi|(r) (yi|z0

1 , · · · , z0
i−1, yi+1, · · · , ym)

]

=
[

f1|(1) (y1|y1, y2, · · · , ym) × f2|(2) (y2|y0
1, y3, y4 · · · , ym) × · · · fm|(m)

(
ym|y0

1, y0
2, y0

3 · · · , y0
m−1

)

f1|(1) (y0
1|y2 · · · , ym) × f2|(2) (y0

2|y0
1, y3, y4 · · · , ym) × · · · fm|(m) (ym|y0

1, y0
2, y0

3 · · · , y0
m−1)

]

×
[

f1|(1) (z0
1 |y2, y3, · · · , ym) f2|(2) (z0

2 |z0
1 , y2, y3, y4 · · · , ym) · · · fm|(m)

(
z0

m|z0
1 , z0

2 , z0
3 · · · , z0

m−1

)

f1|(1) (y1|y2, y3 · · · , ym) f2|(2) (y0
2|y0

1, y3, y4 · · · , ym) · · · fm|(m) (ym|z0
1 , z0

2 , z0
3 · · · , z0

m−1)

]

= δ
(
y0

1, y0
2, · · · , y0

m; z0
1 , z0

2 , · · · , z0
m

)
,

say, where δ() is a function which depends on (y0
1, y0

2, · · · , y0
m) and (z0

1 , z0
2 , · · · , z0

m) and is equal to 1 if y0
i =

z0
i , i = 1, 2, · · · , m; and doesn’t depend on (y1, y2, · · · , ym) for (y0

1, y0
2, · · · , y0

m) ̸= (z0
1 , z0

2 , · · · , z0
m) .

Hence, the proof.
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4 Illustrative Examples
In this section, we discuss couple of examples (in the bivariate case) which are given as textbook problems
(as a general discussion) in [1] without any solution. To the best of the knowledge of the author, no such
solution and/or hint of solution exists in the literature. We list them as follows.

1. Example 1. Suppose that we have the following two putative conditional densities

f (x|y) ∝ y exp (−yx) , 0 < x < A;
f (y|x) ∝ x exp (−xy) , 0 < y < A;

(7)

Then, we make the following conjecture. If the set A is finite, then the two conditionals are
compatible whereas if the set A is is infinite, then the two conditionals are incompatible.

Proof. By direct application of the condition in Eq. (3), the ratio of the two given conditionals will
be

f (x|y)
f (y|x) = y

x
,

with u(x) = 1
x
, and v(y) = y. Next, note that,

∫

S(X)
u(x)dν1(x) =

∫ A

0

1
x

dx = log(A), (8)

provided 1 < A < ∞ i.e., a finite number. Obviously, if A approaches to ∞ then the above integral
becomes infinite/ doesn’t exist. Hence, the proof.

2. Example 2. Does there exist a joint bivariate density with the following conditionals of the form:

f (x|y) = λ(y) exp [−λ(y)x] , x > 0, λ(y) > 0, and

f (y|x) = α

σ(x)

(
1 + y

σ(x)

)−(α+1)

, y > 0, σ(x) > 0?

Proof. By direct application of the condition in Eq. (3), the ratio of the two given conditionals will
be (as before)

f (x|y)
f (y|x) = λ(y)σ(x) exp [−λ(y)x]

α

(
1 + y

σ(x)

)(α+1)

. (9)
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Next, consider the following cases

• Case 1. Suppose, λ(y) = θ1 > 0, and σ(x) = θ2 > 0. Then, from Eq. (9), one can compute
(using Eq. (3))
with u(x) = exp [−θ1x] , and v(y) = y. Next, note that,

∫

S(X)
u(x)dν1(x) =

∫ ∞

0
exp [−θ1x] dx < ∞, (10)

thereby the two given conditionals will be compatible. It appears that no other choices of λ(y)
and/or σ(x) would make this two conditional densities compatible.

5 Concluding Remarks
Compatibility under the absolutely continuous set-up has not been discussed adequately due to possible
hindrance from the computational aspects including, but not limited to the integrability in bivariate and
in higher dimensions as well as visualizing the whole thing. In this paper, we look at some of the simple
results/conditions with an extension to multivariate dimension regarding the compatibility of conditional
densities. Compatibility of conditional densities in the presence of imprecise information and/or information
on conditional moments/ percentiles will be the subject matter of a separate article.
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Abstract
We present several aspects of what is now known as BIG DATA Analytics with its advantages as well as pitfalls
in general.
Keywords: .

1 Introduction
We present several aspects of what is now known as the BIG DATA with its advantages as well as pitfalls
in general. Far from being an exhaustive review of this emerging field, this is an overview from the point
of view of a statistician and it is a compilation of ideas of many researchers, organizations and from online
sources. Our thanks are due to all those authors whose contributions have been listed in the references
and whose ideas have been presented here and also to all those authors whose work we have inadvertently
missed in including in the list of references. Some of our ideas dealing with Big Data and Data Science
are discussed in Prakasa Rao (2015, 2017, 2021, 2022) and in Pyne et al. (2016).

Without any doubt, the most discussed current trend in statistics is BIG DATA. Different people think
of different things when they hear about Big Data. For statisticians, how to get usable information out of
data bases that are so huge and complex that many of the traditional or classical methods cannot handle?
For computer scientists, Big Data poses problems of data storage and management, communication and
computation. For citizens, Big Data brings up questions of privacy and confidentiality.
What is Big Data? Big Data is relentless. It is continuously generated on a massive scale. It is
generated by online interactions among people, by transactions between people and systems and by
sensor-enabled equipment such as aerial sensing technologies (remote sensing), information-sensing mobile
devices, wireless sensor networks etc. Big Data is relatable. It can be related, linked and integrated to
provide highly detailed information. Such a detail makes it possible, for instance, for banks to introduce
individually tailored services and for health care providers to offer personalized medicines. Big data is
a class of data sets so large that it becomes difficult to process it using standard methods of data
processing. The problems of such data include capture or collection, curation, storage, search, sharing,
transfer, visualization and analysis. Big data is difficult to work with using most relational data base
management systems, desktop statistics and visualization packages. Big Data usually includes data sets
with size beyond the ability of commonly used software tools.
When do we say that a data is a Big Data? Is there a way of quantifying the size of the data? We
will come back to this question later in this article. Advantage of studying Big Data is that additional
information can be derived from analysis of a single large set of related data, as compared to separate
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smaller sets with the same total amount of data, allowing correlations to be found. For instance, analysis of
a large data in marketing a product will lead to information on business trend for that product. Big Data can
make important contributions to international development. Analysis of Big Data leads to a cost-effective
way to improve decision making in important areas such as health care, economic productivity, crime
and security, natural disaster and resource management. Large data sets are encountered in meteorology,
genomics, biological and environmental research. They are also present in other areas such as internet
search, finance and business informatics. Data sets are big as they are gathered using sensor technologies.
There are also examples of Big Data in areas which we can call Big Science and in Science for research
(cf. Prakasa Rao (2022)).

For Government, Big Data is present for climate simulation and analysis in meteorology, for official
statistics and for information connected with national security. For private sector companies such as
Flipkart and Amazon, Big Data comes up from millions of back-end operations every day involving queries
from customer transactions, from vendors and from others.

Big Data sizes are a constantly moving target. It involves increasing volume (amount of data),
velocity (speed of data in and out) and variety (range of data types and sources). Big Data are of
high volume, high velocity and/or high variety information assets. It requires new forms of processing
to enable enhanced decision making, insight discovery and process optimization. During the last twenty
years, several companies here and abroad are adopting to data-driven approach to conduct more targeted
services to reduce risks in decision making and to improve performance. They are implementing specialized
data analytics to collect, store, manage and analyze large data sets. For example, some of the available
financial data sources include stock prices, currency and derivative trades, transaction records, high-
frequency trades, unstructured news and texts, consumer confidence and business sentiments from social
media and internet among others. Analyzing these massive data sets help measuring firms risks as well
as systemic risks. Analysis of such data requires people who are familiar with sophisticated statistical
techniques such as portfolio management, stock regulation, proprietary trading, financial consulting and
risk management. Big Data are of various types and sizes. Massive amounts of data are hidden in social
net works such as Google, Face book, Linked In , You tube and Twitter now known as X. These data
reveal numerous individual characteristics and have been exploited.

There are new types of data now. These data are not numbers but they come in the form of curves
(functions), images, shapes or network. The data might be a “Functional Data" which may be a time
series with measurements of the blood oxygenation taken at a particular point and at different moments
in time. Here the observed function is a sample from an infinite dimensional space since it involves
knowing the oxidation at infinitely many instants. The data from e-commerce is of functional type, for
instance, results of auctioning of a commodity/item during a day by an auctioning company. Brain and
neuroimaging data are typical examples of another type of functional data. These data is acquired to
map the neuron activity of the human brain to find out how the human brain works. The next-generation
functional data is not only a Big Data but a complex data.

Social media and internet contains massive amounts of information on the consumer preferences
leading to information on the economic indicators, business cycles and political attitudes of the society.
Analyzing large amount of economic and financial data is a difficult issue. One important tool for such
analysis is the usual vector auto-regressive model involving generally at most ten variables and the number
of parameters grows quadratically with the size of the model. Now a days econometricians need to analyze
multivariate time series with hundreds of variables. Incorporating all these variables lead to over-fitting and
bad prediction. One solution is to incorporate what is called the sparsity assumption. Another example,
where a large number of variables might be present, is in portfolio optimization and risk management.
Here the problem is estimating the covariance and inverse covariance matrices of the returns of the assets
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in the portfolio. If we have 1000 stocks to be managed, then there will be 500500 covariance parameters
to be estimated. Even if we could estimate individual parameters, the total error in estimation can be
large (Pourahmadi (2013)).

There are also concerns dealing with Big Data such as privacy and ethics. We will come back to this
issue later in this article.
When is a data a BIG DATA? (cf. Fokoue (2015), Report of London Workshop (2014)) Big Data
comes in various ways, types, shapes, forms and sizes. The dimensionality p of the input space (number of
parameters) and the sample size n are usually the main ingredients in characterization of the bigness of the
data. Large p and small n data sets will require different set of tools from those for the large n and small
p sets of data. Here n is the data size and p is the number of unknown parameters/variables/covariates.
There is no method which performs well on all types of data.

Let us consider a data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)} where x′
i = (xi1, . . . , xip) is a p-

dimensional vector of characteristics/covariates from the input space X and yi is the corresponding
response. The matrix X of order n × p given by




x11 x12 . . . x1p y1
x21 x22 . . . x2p y2
. . . . . . . . . . . . . . .

xn1 xn2 . . . xnp yn




is the data matrix. Five aspects of the data matrix are important:

(i) The dimension p representing the number of explanatory variables measured.

(ii) The sample size n representing the number of observations/sites at which the variables are measured
or collected.

(iii) The relationship between p and n measured through the ratio of them.

(iv) The type of variables measured (categorical, interval, count, ordinal, real-valued, vector-valued,
function-valued) and the indication of scales/units of measurement.

(v) The relationship among the columns of the data matrix to check multi-collinearity in the explanatory
variables.

What is meant by “Massive or Big Data" as a function of p? Suppose we are dealing with a
multiple linear regression problem with p covariates or explanatory variables under a Gaussian noise/error.
For a model space search for variable selection, we have to find the best subset from among 2p − 1
models/sub-models. If p = 20, then 2p − 1 is about a million; if p = 30, then 2p − 1 is about a billion;
and if p=40, then 2p − 1 is about a trillion. Hence any problem with more than p = 50 variables is
a massive data problem. It involves searching a thousand trillion models which is a huge task even for
modern computers. Hence any problem with more than 50 predictor variables can be called BIG DATA.
If the number of predictor variables is more than 100, then it is called a MASSIVE DATA problem.
What is meant by “Massive or Big Data" as a function of n? We generally believe that the larger
the sample from a population, the better is the inference, due to the law of large numbers. However
the computational and statistical complexity in using methods of regression analysis involves inversion of
n × n matrices which is computationally intensive when n is large. It takes O(n3) number of operations
to invert an n × n matrix. Based on this observation, we might say that the data is observation-massive
if n > 1000.
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What is meant by “Massive or Big Data" as a function of n/p? Suppose that we are in a situation
with a data where p > 50 or n > 1000. We have seen that the data can be considered massive in both
cases. However the ratio n/p is even more important than n and p taken separately.Let us suppose that
we have at least ten observations for each one of the p variables. Hence we have n > 10p. Let us also
suppose that the information in the data is an increasing function of n. We have the following scenario
(cf. Fokoue (2015)).

(A)n/p < 1 IP n << p, n > 1000 Large p, Large n

(D)n/p < 1 IP n << p, n ≤ 1000 Large p, Small n

(B)1 ≤ n/p < 10 IS n > 1000 Small p, Large n

(E)1 ≤ n/p < 10 IS n ≤ 1000 Small p, Smaller n

(C)n/p ≥ 10 IA n >> p, n > 1000 Smaller p, Large n

(F)n/p ≥ 10 IA n >> p, n ≤ 1000 Smaller p, Small n
(IP=Information poverty; IS= Information scarcity; IA= Information abundance)

The BIG DATA problem is with the cases (A) and (D).
For statisticians, Big Data challenges some basic paradigms.The aim is to develop a model that

describes how the response variable is related to p other variables or covariates and to determine which
variables are important to characterize or explain the relationship. Fitting the model to data involves
estimating the parameters from the data and assessing the evidence that they are different from zero
indicating the importance of the variable. When p >> n, the number of parameters is huge relative to
the information about them in the data. Thousands of irrelevant parameters will appear to be statistically
significant if one uses small data statistics. Big Data has special features that are not present in the classical
data sets. Big Data are characterized by massive sample size and high-dimensionality. Massive sample
size allows one to discover hidden patterns associated with small sub-populations. Modeling the intrinsic
heterogeneity of Big Data needs better statistical methods. The problems of high-dimensionality in data
are noise accumulation, spurious correlation and incidental endogeny. Big Data is often a consequence of
aggregation of many data sources corresponding to different sub-populations. Each sub-population might
have a unique feature which is not shared by others. A large sample size enables one to better understand
heterogeneity. A mixture model for the population may be appropriate for a Big data.

For example, a mixture probability density of the form

λ1 p1(y; θ1(x)) + · · · + λm pm(y; θm(x))

where λj ≥ 0 represents the proportion of j-th subpopulation and pj(y; θj(x)) is the probability density of
the j-th sub-population given the covariate x with θj(x) as the parameter might be a good fit for a Big
Data. In practice, λj is very small for some j. If the sample size n is small, then nλj is also small and hence
it might not be possible to infer about the parameter θj(x). Analyzing Big Data requires simultaneous
estimation or testing of a large number of parameters. Errors made in inferring on these parameters
accumulate when a decision on inference from the data depends on these parameters. Such a noise
accumulation is severe in high-dimensional data and it may even dominate the true signal. This is handled
by the sparsity assumption. High-dimensionality brings in spurious correlation due to the fact that many
uncorrelated random variables may have high sample correlation coefficient in high dimensions.Spurious
correlation leads to wrong inferences and hence false results. Unlike spurious correlation, incidental
endogeny may be present in Big Data. It is the existence of correlation between variable "unintentionally"
as well as due to "high-dimensionality". The former is analogous to finding two persons who look alike but
have no genetic relationship where as the latter is similar to meeting an acquaintance by chance in a big
city. Endogeny happens due to selection bias, measurement errors and omitted variables (cf. Fan et al.
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(2013)). With the advantage of high-tech measurement techniques, it is now possible to collect as many
features as possible.This increases the possibility that some of them might be correlated to the residual
noise leading to incidental endogeny. Another reason for incidental endogeny is the following. Big Data are
usually aggregated from multiple sources with possibly different data generating schemes. This increases
the possibility of selection bias and measurement errors which also leads to possible incidental endogeny.
Some statistical methods have been proposed to handle such issues such as penalized quasi-likelihood to
handle noise accumulation issue.

Big Data are massive and very high-dimensional and involve large-scale optimization if one wants to
use a likelihood or quasi-likelihood approach directly. Optimization with a large number of variables is
not only expensive due to computational costs but also suffers from slow numerical rates of convergence
and instability. It is also computationally infeasible to apply optimization methods on the raw data. To
handle the data both from statistical and computational views, dimension-reduction techniques have to
be adopted.

2 Some issues with the Big Data cf. Fokoue (2015), Buelens et
al. (2014)

(i) Batch data against incremental data production: Big Data is delivered generally in a sequential
and incremental manner leading to online learning methods. Online algorithms have the important
advantage that the data does not have to be stored in memory. All that is required is in the storage
of the built model at the given time in the sense that the stored model is akin to the underlying
model. If the sample size n is very large, the data cannot fit into the computer memory and one
can consider building a learning method that receives the data sequentially or incrementally rather
than trying to load the complete data set into memory.This can be termed as sequentialization.
Sequentialization is useful for streaming data and for massive data that is too large to be loaded into
memory all at once.

(ii) Missing values and imputation schemes: In most of the cases of massive data, it is quite common
to be faced with missing values. One should check at first whether they are missing systematically,
that is in a pattern, or if they are missing at random and the rate at which they are missing. Three
approaches are suggested to take care of this problem: (a) Deletion which consists of deleting all
the rows in the Data matrix that contain any missing values ; (b) Central imputation which consists
of filling the missing cells of the Data matrix with central tendencies like mean, mode or median;and
(c) Model-based imputation methods such as EM-algorithm.

(iii) Inherent lack of structure and importance of pre-processing: Most of the Big Data is
unstructured and needs pre-processing.

(iv) Sparsity problem: With the inherently unstructured data like text data, the pre-processing of data
leads to data matrices whose entries are frequencies of terms in the case of text data, that contain
too many zeroes leading to the sparsity problem. The sparsity problem in turn leads to modeling
issues.

(v) Homogeneity versus heterogeneity: There are massive data sets which have input space
homogeneous, that is, all the variables are of the same type. Examples of such data include audio
processing, video processing and image processing. There are other types of Big Data where the
input space consists of variables of different types. Such types of data arise in business, marketing
and social sciences where the variables can be categorical, ordinal, interval, count and real-valued.
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(vi) Differences in units of measurement: It is generally observed that the variables involved are
measured on different scales leading to modeling problems. One way to take care of this problem
is to perform transformations that project the variables onto the same scale. This is done either by
standardization which leads all the variables to have mean zero and variance one or by unitization
which consists in transform the variables so that the support for all of them is the unit interval [0,1].

(vii) Selection bias and quality: When Big Data are discussed in relation to official statistics, one point
of criticism is that Big Data are collected by mechanisms unrelated to probability sampling and are
therefore not suitable for production of official statistics for government. This is mainly because
Big Data sets are not representative of the population of interest. In other words, they
are selective by nature and therefore yield biased results. When a data set becomes available
through some mechanism other than random sampling, there is no guarantee what so ever that the
data is representative unless the coverage is full. When considering the use of Big Data for
official statistics, an assessment of selectivity has to be conducted. How does one assess
selectivity of Big Data?

(viii) No clarity of target population: Another problem of Big Data dealing with official statistics is that
many Big data sources contain records of events not necessarily directly associated with statistical
units such as household, persons or enterprises. Big Data is often a by-product of some process not
primarily aimed at data collection. Analysis of Big Data is data-driven and not hypothesis-driven.
For Big Data, the coverage is large but incomplete and selective. It may be unclear what
the relevant target population is.

(ix) Comparison of data sources: Let us look at a comparison of different data sources for official
statistics as compared to Big Data.
Comparison between Sample Survey and Big Data:

Data Source Sample Survey Big Data
Volume Small Big
Velocity Slow Fast
Variety Narrow Wide
Records Units Events or Units

Generator Sample Various Organizations
Coverage Small fraction Large/Incomplete

(Ref: Buelens et al. (2014))

Comparison between Census and Big Data:
—————————————–
Data Source Census Big Data

Volume Large Big
Velocity Slow Fast
Variety Narrow Wide
Records Units Events or Units

Generator Administration Various Organizations
Coverage Large/Complete Large/Incomplete

(Ref: Buelens et al. (2014))

(x) Additional Remarks on the Use of Big Data for Official Statistics: For Big Data dealing with
the official statistics, there are no approaches developed till now to measure the errors or to check
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the quality. It is clear that bias due to selectivity has role to play in the accounting of Big Data.
Big Data can be the single source of data for the production of some statistic about a population
of interest. Assessing selectivity of the data is important. Correcting for selectivity can some times
be achieved by choosing suitable method of model-based inference (cf. Breiman (2001)). These
methods are aimed at predicting values for missing/unobserved units. The results will be biased if
specific sub-populations are missing from the Big Data set. Big Data set can be used as auxiliary
data set in a procedure mainly based on a sample survey. The possible gain of such an application
for the sample survey is likely reduction in sample size and the associated cost. Using small area
models, Big Data can be used as a predictor for survey based measurement. Big Data mechanism
can be used as a data collection strategy for sample surveys. Big Data may be used irrespective of
selectivity issues as a preliminary survey. Findings obtained from Big Data can be further checked
and investigated through sample surveys (cf. Struijs et al. (2014)).

3 Methods of handling Big Data cf. Fokue (2015)
(i) Dimension reduction: Dimension reduction is an important method for handling Big Data as we

mentioned earlier. Dimensionality reduction involves the determination of intrinsic dimensionality q of
the input space where q << p. This can be done by orthogonalization techniques on the input space
which reduces the problem to a lower dimensional orthogonal input space leading to variance reduction
for the estimator. Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
are the methods for dimensionality reduction. However if p >> n, then most of these techniques
cannot be used directly.

(ii) Bagging: As it was observed earlier, it is common in a massive data or a big data that a single model
selected does not lead to optimal prediction. If there is a multi-collinearity between the variables
which is bound to happen when p is very large, the estimators are unstable and of large variances.
Bootstrap aggregation (also called bagging) reduces the variance of the estimators by aggregation
of bootstrapped versions of the base estimators.

(iii) Paralellization: When the computational complexity for building the base estimator is high, the
method of bagging becomes inefficient and not practical. One way to avoid this problem is to use
parallel processing. Big Data analytics will need parallel processing or parallelization for speeding up
computation or to handle massive data that cannot fit into a single computer memory. One way to
make statistical procedures more efficient in analysis of Big Data is to parallelize them, that is, to
write many algorithms that can run on many computers or many processors at the same time. The
method of “Bootstrap" is a standard method for inferring the probability distribution from a sample.
It is computationally intensive. However it is ideally suitable for parallelization because it involves
generating numerous independent rounds of simulated data.

(iv) Regularization: With large p and small n, there exist a multiplicity of solutions for any optimization
problem involving Big Data and hence the problem becomes ill-posed. Regularization methods are
used to find a feasible optimal solution and one method of regularization is Lagrangian formulation
of a constrained version of the problem. The method of LASSO (Tibshirani (1996)) is one such
method in high-dimensional data analysis.

(v) Assumption of sparsity: As we noted earlier, thousands of irrelevant parameters will appear to be
statistically significant if we use small data statistics for analysis of Big Data. In classical statistics,
if the data implies occurrence of an event that has one-in-a million chance of occurring, then we are
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sure it is not by chance and hence consider it statistically significant. But if we are considering a
Big Data with a large number of parameters, it is possible for the event to occur by chance and not
due to significance of the relationship. Most data sets have only a few strong relationships between
variables and everything else is noise. Thus most of the parameters do not matter. This leads to
sparsity assumption which is to assume that all but a few parameters are negligible. This will allow a
way of extracting information from a Big Data. One such method is L1-minimization called LASSO
mentioned earlier. This was used in the field of image processing to extract an image in sharp focus
from blurry or noisy data.

(vi) The problem of “Big n, Big p, Little t": The speed at which one can process is an important
element in analyzing Big Data. Classical statistics was always done in an off-line mode, the size was
small and the the time for analysis was essentially unlimited. However, in the era of Big Data things
are different. For a web company which is trying to predict user reaction and elicit user behavior
such as clicking on an advertisement sponsored by a client, time is important. The web company
might have only milliseconds to decide how to respond to a given user’s click. Furthermore the model
constantly has to change to adopt to new users and new products. The objective of the person who
is analyzing the data may not be to deliver a perfect answer but to deliver a good answer fast.

4 Privacy and Confidentiality for Big Data
How to keep privacy and confidentiality in the era of Big Data? Public concerns about privacy,
confidentiality and misuse and abuse of individual data is a matter of concern in collection of Big Data.
There are ways of masking Big Data. One way is to anonymize the records after they are collected by
adding a random noise or to do matrix masking of the data matrix by a known mathematical operation so
that individual information is difficult to retrieve. Cryptography is a discipline that applies mathematical
transformations to data that are either irreversible or reversible only with a password or reversible only at
a great expense that an opponent can ill afford to pay for it.

5 Computing issues for Big Data
(Fan et al. (2013)) As was mentioned earlier, the massive or very large sample size of Big data is a
challenge for traditional computing infrastructure. Big Data is highly dynamic and not feasible or possible
to store in a centralized data base. The fundamental approach to store and process such data is
to “divide and conquer". The idea is to partition a large problem into more tractable and independent
sub-problems. Each sub-problem is tackled in parallel by different processing units. Results from individual
sub-problems are then combined to get the final result. "Hadoop" is an example of basic software and
programming infrastructure for Big Data processing. "Map Reduce" is a programming model for processing
large data sets in a parallel fashion. "Cloud Computing" is suitable for storing and processing of Big Data.
We are not presenting the problems involved in storage and computation connected with Big Data in this
article.

6 Why Big Data is in trouble?
Answer: They forgot about Applied Statistics (Jeff Leak, May 7, 2014 "Simply Statistics"). There were
articles with titles "The parable of Google Flu: traps in Big Data analysis"."Big Data: are we making a
big mistake ? ; "Google Flu trends: the limits of Big Data"; "Eight (No, Nine!) problems with Big Data".

All of the articles listed above and on-line point out the problems of Big Data such as sampling
populations, multiple testing, selection bias and over-fitting besides others. Big Data is not a solution for
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all issues of data analysis. "There is a tendency for Big Data researcher and more traditional applied
statistician to live in two different realms. Big Data offers enormous possibilities for understanding
human interactions at a societal scale with rich spatial and temporal dynamics and for detecting complex
interactions and nonlinearities among variables. However traditional “small data" often offer information
that is not contained in Big Data" (Lazer et al. (2014)).
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Abstract
In this study, a new approach is recommended for calculating the finite population mean in situations where
the sampling frame of the studied population is not accessible. This is crucial due to the fact that Stratified
Random Sampling necessitates prior knowledge of both the sampling frame and strata weights. Post stratification
is the superior approach compared to other sampling technique when sampling frame is not available. In this
technique, from the population with heterogeneity, a sample of required size has been drawn using simple random
sampling without replacement. Subsequently, the obtained sample is stratified into different strata based on some
stratification factor.

In this paper a dual to separate ratio-cum-product type estimator is recommended in case of post stratification
for estimating the finite population mean. For analyzing the efficiency of the estimator, the bias and the mean
squared error of the developed estimator have been derived up to the first degree of approximation. The conditions
for which the developed estimator performs better than other considered estimators have also been obtained up
to the first degree of approximation. The bias comparison has been shown theoretically. Simulation study has
been carried out to support the theoretical results.

From the simulation study, it is observed that the percent relative efficiency of the developed estimator
increases with the increase in sample size and highest among all other estimators. This findings are visually
represented with the help of bar graph.Thus, it can be concluded that, under specific conditions, the developed
estimator provide more precise estimates compared to other considered estimators.
Keywords: : Bias, Mean squared error, Dual to separate ratio cum product type estimator, Simulation study.

1 INTRODUCTION
Stratified random sampling is often used to obtain a representative sample, which can produce precise
estimates in the case of heterogeneous populations. In this approach, the heterogeneous population is
divided into homogeneous subgroups or strata on the basis of some stratification factor, then from each
stratum a small sample is drawn by using simple random sampling without replacement. Hansen, et al.
(1946), Kadilar and Cingi (2003), Singh, et al. (2008) and many other researchers have used stratified
random sampling for the estimation of the population mean. The limitation of stratified random sampling
is that it requires prior knowledge of strata weights and sampling frames for each stratum, but there are
some situations when strata weights and sampling frames are not available. In the absence of a sampling
frame, the post-stratification technique is the better approach for the estimation of population mean in
case of heterogeneous population. In this approach, a sample of the required is drawn using simple random
sampling then the selected sample is stratified into different strata on the basis of some characteristics.

© 2024 Author(s). (https://www.thegsa.in/).
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For the estimation of population mean in case of post stratification Ige and Tripathi (1989) developed
ratio and product estimators. By using the exponential function Bahl and Tuteja (1991) introduced ratio
and product type exponential estimator which were studied by Singh et al (2008) in stratified random
sampling and the work was further extended by Tailor et al (2017) in post stratification. Motivated by
Srivenkataraman (1980) and Bondyopadhyayh (1980), Lone and Tailor (2014) suggested dual to separate
ratio type exponential estimator in post stratification. Tailor and Mehta (2019) proposed a ratio and
ratio exponential estimator for finite population mean in case of post-stratification. Rather et al (2022)
developed a new ratio type estimator for computation of population mean under post-stratification. Singh
and Nigam (2022) proposed a two parameter ratio-product-ratio estimator in case of post stratification.

2 POST STRATIFICATION TECHNIQUE
Consider a population U = (U1, U2, . . . , UN) of size N which is stratified into L strata of size
N1, N2, . . . , NL such that ∑L

i=1 Nh = N . Let x, y and z are the triplets indexed over the population
U . The study variable y is positively correlated with the first auxiliary variable x and negatively correlated
with the second auxiliary variable z. Let yhi, xhi, and zhi be the observations on the ith unit of the hth
stratum for the study variable y and auxiliary variables x and z respectively. The mean of the hth stratum
of the study variable y is denoted by Ȳh, and the means of the hth stratum of x and z are denoted by
X̄h and Ȳh, respectively. Ȳ , X̄, and Z̄ are the population means of the study variable y and auxiliary
variables x and z, respectively. By using simple random sampling without replacement, a sample of size
n is drawn from a population U , then from the selected sample, it is recorded which units belong to the
hth stratum. Let nh be the size of the sample falling in the hth stratum such that ∑L

h=1 nh = n. The
possibility of nh being zero is very small as it is assumed that n is so large.

where,

X̄h = 1
Nh

Nh∑

i=1
xhi

, Ȳh = 1
Nh

Nh∑

i=1
yhi

, Z̄h = 1
Nh

Nh∑

i=1
zhi

, X̄ =
L∑

h=1
WhX̄h,

Ȳ = ∑L
h=1 WhȲh , Z̄ = ∑L

h=1 WhZ̄h and Wh = Nh

N
is the weight of the hth stratum.

3 SOME EXISTING ESTIMATORS
In post stratification approach, the usual unbiased estimator for population mean Ȳ is defined as

ȳP S =
L∑

h=1
WhȲh (3.1)

where ȳh = 1
nh

∑nh
i=1 yhi

is the sample mean of the hth stratum of size nh.
To the fist degree of approximation the variance of ȳP S is given as

V (ȳP S) =
( 1

n
− 1

N

) L∑

h=1
WhS2

yh + 1
n2

L∑

h=1
(1 − Wh) S2

yh (3.2)

For estimation of population mean of study variable y, Ige and Tripathi (1989) developed ratio estimator
in post stratification which is defined as

ˆ̄YRP S = ȳP S

(
X̄

x̄P S

)
(3.3)

70



Gujarat Journal of Statistics and Data Science Vol. 40, pp. 69–79, 2024

The separate version of Ige and Tripathi (1989) estimator is defined as

ˆ̄Y S
RP S =

L∑

h=1
Whȳh

(
X̄h

x̄h

)
(3.4)

The bias and mean squared error of ˆ̄Y S
RP S up to the first degree of approximation are given as

B( ˆ̄Y S
RP S) =

( 1
n

− 1
N

) L∑

h=1

S2
xhR1h − Syxh

X̄h

(3.5)

and

MSE( ˆ̄Y S
RP S) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh +
L∑

h=1
WhR2

1hS2
xh − 2

L∑

h=1
WhR1hSyxh

]
(3.6)

Using the dual approach the separate ratio estimator in post stratification is defined as

ˆ̄Y ∗
RP S =

L∑

h=1
Whȳh

(
x̄∗

h

X̄h

)
(3.7)

where, x̄∗
h = NhX̄h−nhx̄h

Nh−nh
.

The bias and mean squared error of ˆ̄Y ∗
RP S up to the first degree of approximation are obtained as

B( ˆ̄Y ∗
RP S) =

( 1
n

− 1
N

) L∑

h=1

g,
hSyxh

X̄h

(3.8)

and

MSE( ˆ̄Y ∗
RP S) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh +
L∑

h=1
WhR2

1hg,2
h S2

xh − 2
L∑

h=1
Whg,

hR1hSyxh

]
(3.9)

Bahl and Tuteja (1991) used exponential function in ratio estimator for estimation of population mean.
Motivated by Bahl and Tuteja (1991), Singh et al.(2008) developed the same estimator in stratified random
sampling. Later in 2017, Tailor et al (2017) developed ratio type exponential estimator in post stratification
for estimation of population mean as

ˆ̄Y Re
RP S = ȳP S exp

(
X̄ − x̄P S

X̄ + x̄P S

)
(3.10)

The separate ratio type exponential estimator in case of post stratification can be defined as

ˆ̄Y SRe
P S =

L∑

h=1
Whȳh exp

(
X̄h − x̄h

X̄h + x̄h

)
(3.11)

The bias and mean squared error of separate ratio type exponential estimator ˆ̄Y S
P SRe up to the first

degree of approximation are obtained as

B( ˆ̄Y SRe
P S ) =

( 1
n

− 1
N

) L∑

h=1

3S2
xhR1h − 4Syxh

8X̄h

(3.12)
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and

MSE( ˆ̄Y SRe
P S ) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh + 1
4

L∑

h=1
WhR2

1hS2
xh −

L∑

h=1
WhR1hSyxh

]
(3.13)

Dual to classical ratio estimator was proposed by Srivenkataramana (1980) and Bandhyopadhyayh
(1980). Dual to Bahl and Tuteja (1991) estimator was developed by Tailor and Tailor (2012). Motivated
by Srivenkataraman (1980) and Bandhyopadhyayh (1980), Lone and Tailor (2014) envisaged dual to
separate ratio type exponential estimator for estimation of population mean Ȳ post stratification technique
as

ˆ̄Y ∗Re
P S =

L∑

h=1
Whȳh exp

(
x̄∗

h − X̄h

x̄∗
h + x̄h

)
(3.14)

Up to the first degree of approximation, the bias and mean squared error of ˆ̄Y ∗Re
P S are determined as

B( ˆ̄Y ∗Re
P S ) =

( 1
n

− 1
N

) L∑

h=1

−R1hg,2
h S2

xh − 4g,
hSyxh

8X̄h

(3.15)

and

MSE( ˆ̄Y ∗Re
P S ) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh + 1
4

L∑

h=1
Whg,2

h R2
1hS2

xh −
L∑

h=1
Whg,

hR1hSyxh

]
(3.16)

In case of post stratification, Ige and Tripathi (1989) developed product type estimator for estimation
of population mean as

ˆ̄YP P S = ȳP S

(
x̄P S

X̄

)
(3.17)

Separate version of Ige and Tripathi (1989) product type estimator in can be written as

ˆ̄Y S
P P S =

L∑

h=1
Whȳh

(
x̄h

X̄h

)
(3.18)

The bias and mean squared error of ˆ̄Y S
P P S up to the first degree of approximation are obtained as

B( ˆ̄Y S
P P S) =

( 1
n

− 1
N

) L∑

h=1

Syxh

X̄h

(3.19)

and

MSE( ˆ̄Y S
P P S) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh +
L∑

h=1
WhR2

1hS2
xh + 2

L∑

h=1
WhR1hSyxh

]
(3.20)

The dual to separate product type estimator for estimation of population mean in case of post
stratification is defined as

ˆ̄Y ∗
P P S =

L∑

h=1
Whȳh

(
X̄h

x̄∗
h

)
(3.21)
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The bias and mean squared error of ˆ̄Y ∗
P P S to the degree of approximation are

B( ˆ̄Y ∗
P P S) =

( 1
n

− 1
N

) L∑

h=1

g,2
h S2

xhR1h + g,
hSyxh

X̄h

(3.22)

and

MSE( ˆ̄Y ∗
P P S) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh +
L∑

h=1
WhR2

1hg,2
h S2

xh + 2
L∑

h=1
Whg,

hR1hSyxh

]
(3.23)

For estimation of population mean, Bahl and Tuteja (1991) developed product type exponential
estimator. Singh et al. (2008) modified the same estimator in stratified random sampling then motivated
by Bahl and Tuteja (1991) and Singh et al. (2008), the product type exponential estimator was suggested
by Tailor et al (2017) in case of post stratification as

ˆ̄Y P e
P S = ȳP S exp

(
x̄P S − X̄

x̄P S + X̄

)
(3.24)

In case of post stratification, the separate version of Tailor et al (2017) estimator can be defined as

ˆ̄Y SP e
P S =

L∑

h=1
Whȳh exp

(
x̄h − X̄h

x̄h + X̄h

)
(3.25)

The bias and mean squared error of separate product type exponential estimator in case of post
stratification up to the first degree of approximation are obtained as

B( ˆ̄Y SP e
P S ) =

( 1
n

− 1
N

) L∑

h=1

4Syxh − S2
xhR1h

8X̄h

(3.26)

and

MSE( ˆ̄Y SP e
P S ) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh + 1
4

L∑

h=1
WhR2

1hS2
xh +

L∑

h=1
WhR1hSyxh

]
(3.27)

For the estimation of population mean, motivated by Srivenkataraman (1980) and Bandyopadhyayh
(1980) Lone and Tailor (2015) suggested the dual to separate product type exponential estimator in case
of post stratification as

ˆ̄Y ∗P e
P S =

L∑

h=1
Whȳh exp

(
X̄h − x̄∗

h

X̄h + x̄∗
h

)
(3.28)

Up to the first degree of approximation, the bias and mean squared error of the estimator suggested by
Lone and Tailor (2015) ˆ̄Y ∗P e

P S are obtained as

B( ˆ̄Y ∗P e
P S ) =

( 1
n

− 1
N

) L∑

h=1

3R1hg,2
h S2

xh + 4Syxh

8X̄h

(3.29)

and

MSE( ˆ̄Y ∗P e
P S ) =

( 1
n

− 1
N

) [ L∑

h=1
WhS2

yh + 1
4

L∑

h=1
Whg,2

h R2
1hS2

xh +
L∑

h=1
Whg,

hR1hSyxh

]
(3.30)

where, S2
yh = 1

Nh−1
∑L

h=1

(
yhi − Ȳh

)2
, S2

xh = 1
Nh−1

∑L
h=1

(
xhi − X̄h

)2
, Syxh = 1

Nh−1
∑L

h=1

(
yhi − Ȳ

) (
xhi − X̄

)
,

g,
h = nh

Nh−nh
, R1h = Ȳ

X̄
.
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4 THE DEVELOPED ESTIMATOR
Srivenkataramana (1980) suggested dual to ratio estimator for estimation of population mean. Lone
and Tailor (2015) discussed dual to separate ratio and separate product type estimator in case of post
stratification. Then Lakhre (2015) envisaged ratio-cum-product type estimator in case of post stratification
as

ˆ̄Y = ȳP S exp X̄ − x̄P S

X̄ + x̄P S

exp Z̄ − z̄P S

Z̄ + z̄P S

(4.1)

The purpose of this paper is to develop the dual to separate version of Lakhre (2015) i.e. the dual to
separate ratio-cum-product estimator in case of post stratification as

ˆ̄YT N =
L∑

h=1
Whȳh

(
exp x̄∗

h − X̄h

x̄∗
h + X̄h

)
exp

(
Z̄h − z̄∗

h

Z̄h + z̄∗
h

)
(4.2)

where, x̄∗
h = NhX̄h−nhx̄h

Nh−nh
and z̄∗

h = NhZ̄h−nhz̄h

Nh−nh
.

To find the bias and mean squared error of the developed estimator ˆ̄YT N it is assumed that
ȳh = Ȳh(1 + e0h), x̄h = X̄h(1 + e1h), z̄h = Z̄h(1 + e2h).
Such that, E(e0h) = E(e1h) = E(e2h) = 0
E(e2

0h) = ( 1
nWh

− 1
Nh

)C2
yh,E(e2

1h) = ( 1
nWh

− 1
Nh

)C2
xh,

E(e2
2h) = ( 1

nWh
− 1

Nh
)C2

zh, E(e0he1h) = ( 1
nWh

− 1
Nh

)ρyxhCyhCxh,
E(e0he2h) = ( 1

nWh
− 1

Nh
)ρyzhCyhCzh, E(e1he2h) = ( 1

nWh
− 1

Nh
)ρxzhCxhCzh.

5 THE BIAS AND MEAN SQUARED ERROR OF THE DEVEL-
OPED ESTIMATOR

The bias and mean squared error of the developed estimator ˆ̄YT N up to the first degree of approximation
are calculated as

B( ˆ̄YT N) =
( 1

n
− 1

N

) L∑

h=1

[
g,2

h

8

[
3S2

zhR2h

Z̄h

− 2SxzhR1h

Z̄h

− S2
xhR1h

X̄h

]
+ g,

h

2

[
Syzh

Z̄h

− Syxh

X̄h

]]
(5.1)

and

MSE( ˆ̄YT N) =
( 1

n
− 1

N

) L∑

h=1

[
S2

yh + g,2
h

4
[
S2

zhR2
2h + S2

xhR2
1h − 2SxzhR1hR2h

]
− g,

h [SyxhR1h − SyzhR2h]
]

(5.2)

where, S2
zh = 1

Nh−1
∑L

h=1

[
zhi − Z̄h

]2
, Syzh = 1

Nh−1
∑L

h=1[yhi − Ȳh][zhi − Z̄h],
R2h = Ȳh

Z̄h
.

6 EFFICIENCY COMPARISON

(i) On comparing equation (3.2) and (5.2), it is found that the developed estimator ˆ̄YT N is better than
the usual unbiased estimator ȳP S if,MSE( ˆ̄YT N) ≤ V (ˆ̄yP S) i.e.
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L∑

h=1
Whg,2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g,2

h

2 SxzhR1hR2h − g,2
h

4 S2
xhR2

1h + g,
hSyxhR1h − g,

hSyzhR2h

]
(6.1)

(ii) When equation (3.6) and (5.2) are compared, it proved that the developed estimator ˆ̄YT N is better
than separate ratio type estimator ˆ̄Y S

RP S if, MSE( ˆ̄YT N) ≤ MSE( ˆ̄Y S
RP S) i.e.

L∑

h=1
Whg,2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g,2

h

2 SxzhR1hR2h +
(

1 − g,2
h

4

)
S2

xhR2
1h + SyxhR1h (g,

h − 2) − g,
hSyzhR2h

]

(6.2)

(iii) The comparison of equation (3.9) and (5.2) proves that the developed estimator ˆ̄YT N is superior to
the dual to separate ratio type ˆ̄Y ∗

RP S if,MSE( ˆ̄YT N) ≤ MSE( ˆ̄Y ∗
RP S) i.e.

L∑

h=1
Whg,2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g,2

h

2 SxzhR1hR2h + 3g,2
h

4 S2
xhR2

1h − SyxhR1hg,
h − g,

hSyzhR2h

]
(6.3)

(iv) Comparison between equation (3.13) and (5.2) reveals that the developed estimator ˆ̄YT N performs
better than the separate ratio type exponential estimator,if MSE

(
ˆ̄YT N

)
≤ MSE

(
ˆ̄Y SRe

P S

)
i.e.

L∑

h=1
Whg′2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g′2

h

2 SxzhR1hR2h + S2
xhR2

1h

4
(
1 − g′2

h

)
+ SyxhR1h (g′

h − 1) − g′
hSyzhR2h

]

(6.4)

(v) When equation (3.16) and (5.2) are compared, the developed estimator proved ˆ̄YT N to be better
over dual to separate ratio type exponential estimator ˆ̄Y ∗Re

P S if,MSE( ˆ̄YT N) ≤ MSE( ˆ̄Y ∗Re
P S ) i.e.

L∑

h=1
Whg′2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g′2

h

2 SxzhR1hR2h − g′
hSyzhR2h

]
(6.5)

(vi) On comparing equation (3.20) and (5.2), the developed estimator ˆ̄YT N found to be better than
separate version of Ige and Tripathi (1989) estimator ˆ̄Y S

P P S if, MSE( ˆ̄YT N) ≤ MSE( ˆ̄Y S
P P S) i.e.

L∑

h=1
Whg′2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g′2

h

2 SxzhR1hR2h + S2
xhR2

lh

(
1 − g′2

h

4

)
+ SyxhRlh (g′

h + 2) − g′
hSyzhR2h

]

(6.6)

(vii) From equation (3.23) and (5.2), it is concluded that the developed estimator ˆ̄YT N performs
better than the dual to separate product type estimator ˆ̄Y ∗

P P S in case of post stratification if,
MSE( ˆ̄YT N) ≤ MSE( ˆ̄Y ∗

P P S) i.e.

L∑

h=1
Whg′2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g′2

h

2 SxzhR1hR2h + 3
4g′2

h S2
xhR2

1h + 3g′
hSyxhR1h − g′

hSyzhR2h

]
(6.7)
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(viii) From equation (3.27) and (5.2), the developed ˆ̄YT N is more efficient than separate version
of Chouhan (2012) product type exponential estimator ˆ̄Y SP e

P S in case of post stratification if,
MSE( ˆ̄YT N) ≤ MSE( ˆ̄Y SP e

P S ) i.e.

L∑

h=1
Whg′2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g′2

h

2 SxzhR1hR2h + S2
xhR2

1h

4
(
1 − g′2

h

)
+ SyxhR1h (g′

h + 1) − g′
hSyzhR2h

]

(6.8)

(ix) From equation (3.30) and (5.2), it is obtained that the developed estimator ˆ̄YT N performs better
than the Lone and Tailor (2015) dual to separate product type exponential ˆ̄Y ∗P e

P S in case of post
stratification if, MSE( ˆ̄YT N) ≤ MSE( ˆ̄Y ∗P e

P S ) i.e.

L∑

h=1
Whg′2

h S2
zhR2

2h ≤ 4
L∑

h=1
Wh

[
g′2

h

2 SxzhR1hR2h + 2g′
hSyxhR1h − g′

hSyhR2h

]
(6.9)

7 BIAS COMPARISON
This section shows the bias comparison of the developed estimator with other considered estimator. From
equation (3.5), (3.8), (3.12), (3.15), (3.19), (3.22), (3.26), (3.29) and (5.1).

(i)
∣∣∣∣B
(

ˆ̄YT N

) ∣∣∣∣<
∣∣∣∣B
(

ˆ̄Y S
RP S

)∣∣∣∣ if,




(∑L
h=1

[
3
8

g′2
h S2

zhR2h

Z̄h
− g′2

h SxzhR1h

4Z̄h
− S2

xhR1h

X̄h

(
g′2

h

8 + 1
)

+ g′
hSyzh

2Z̄h
+ Syxh

X̄h

(
1 − g′

h

2

)])]

(∑L
h=1

[
3
8

g′2
h S2

zhR2h

Z̄h
− g′2

h SxzhR1h

4Z̄h
+ Sxh2R1h

X̄h

(
1 − g′2

h

8

)
+ g′

hSyzh

2Z̄h
− Syxh

X̄h

(
g′

h

2 + 1
)])




< 0 (7.1)

(ii)
∣∣∣∣B
(

ˆ̄YT N

)∣∣∣∣ <
∣∣∣∣B
(

ˆ̄Y ∗
RP S

)∣∣∣∣ if,




(∑L
h=1

[
3
8

g′2
h S2

zhR2h

Z̄h
− g′2

h SxzhR1h

4Z̄h
− g′2

h

8
S2

xhR1h

X̄h
+ g′

hSyzh

2Z̄h

])

(∑L
h=1

[
3
8

g′2
h S2

zhR2h

Z̄h
− g′2

h SxzhR1h

4Z̄h
− g′2

h

8
S2

xhR1h

X̄h
+ g′

hSyzh

2Z̄h
− 2g′

hSyxh

X̄h

])




< 0 (7.2)

(iii)
∣∣∣∣B
(

ˆ̄YT N

)∣∣∣∣ <

∣∣∣∣B
(

ˆ̄Y SRe
P S

)∣∣∣∣ if,




(∑L
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[
3
8

g′2
h S2

zhR2h

Z̄h
− g′2

h

4
SxzhR1h

Z̄h
− S2

xhR1h

8 [g′2
h + 3] + g′

h

2
Syzh

Z̄h
+ Syxh

2X̄h
[1 − g′

h]
])

(∑L
h=1

[
3
8

g′2
h S2

zhR2h

Z̄h
− g′2

h

4
SxzhR1h

Z̄h
+ S2

xhR1h

8X̄h
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h ] + g′
h

2
Syzh

Z̄h
− Syxh

2X̄h
[1 + g′

h]
])


 < 0 (7.3)

(iv)
∣∣∣∣B
(

ˆ̄YT N

)∣∣∣∣ <

∣∣∣∣B
(

ˆ̄Y ∗Re
P S

)∣∣∣∣ if,
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
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3
8

g′2
h S2
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h

4
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h
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3
8
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3
8

g′2
h S2

zhR2h

Z̄h
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h
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SxzhR1h
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− S2
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h
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Z̄h
+ Syxh

X̄h
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2
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
 < 0 (7.5)

(vi)
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(
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)∣∣∣∣ <
∣∣∣∣B
(

ˆ̄Y ∗
P P S

)∣∣∣∣ if,
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3
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h

4
SxzhR1h

Z̄h
+ 7S2

xhR1hg′2
h

8X̄h
+ g′

h

2
Syzh

Z̄h
+ Syxhg′

h

2X̄h

])


 < 0 (7.6)

(vii)
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


(∑L
h=1

[
3
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(viii)
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(

ˆ̄Y ∗P e
P S

)∣∣∣∣ if,
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− Syxhg′

h

X̄h
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h=1

[
3
8
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
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8 SIMULATION STUDY
Simulation study has been done using R-software for analyzing the performance of the developed estimator
ˆ̄YT N with respect to other considered estimator. The population of size N having four different strata of
equal size has been generated. For the current study, four different sample sizes n = 700, 800, 900 and
1000 are taken from the population.

Step 1: Four different strata of equal size such that N1 = N2 = N3 = N4 = 500 have been generated
from multivariate normal distribution which together constitute a population of size N=2000.

Step 2: From a population of size N, a sample of size n has been drawn using simple random sampling
without replacement and then stratified.

Step 3: Used the sample data obtained for each stratum from Step 2 to find the mean squared error
as well as percent relative efficiency of the developed estimator along with all other considered estimator.

Step 4: Repeated the Step 2 and Step 3, 10000 times to obtain 10000 values for calculating mean
squared error and percent relative efficiency.
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Step 5: Finally the mean squared error and percent relative efficiency of all the estimator have been
calculated through following formulae

MSE(Ei) = 1
10000

∑10000
i=1

(
Ei − Ȳ )2

PRE(Ei) = MSE(ȳP S)
MSE(E) ∗ 100

Ȳ is the population mean of study variable y.The results of mean squared error and percent relative
efficiency for the developed as well as considered estimator are given in Table 1 and 2 respectively.

Estimator 700 800 900 1000
ˆ̄yP S 0.01158 0.009464 0.007722 0.00629
ˆ̄Y S

RP S 0.010649 0.008359 0.007013 0.005686
ˆ̄Y ∗

RP S 0.007082 0.005844 0.005574 0.00573
ˆ̄Y SRe

P S 0.007056 0.005634 0.004699 0.003825
ˆ̄Y ∗Re

P S 0.008159 0.006203 0.004866 0.003844
ˆ̄Y S

P P S 0.044906 0.036753 0.029745 0.024178
ˆ̄Y ∗

P P S 0.025461 0.024703 0.024134 0.024189
ˆ̄Y SP e

P S 0.024199 0.019838 0.016072 0.013075
ˆ̄Y ∗P e

P S 0.017347 0.01563 0.014144 0.01307
ˆ̄YT N 0.004382 0.002879 0.001983 0.001575

.

Table 1: Mean squared error of different estimators.

Estimator 700 800 900 1000
ˆ̄yP S 100.00 100.00 100.00 100.00
ˆ̄Y S

RP S 108.7446 113.2216 110.1234 110.6165
ˆ̄Y ∗

RP S 163.5191 161.9509 138.5345 109.7763
ˆ̄Y SRe

P S 164.1146 167.9821 164.3393 164.4506
ˆ̄Y ∗Re

P S 141.9364 152.5795 158.6949 163.6408
ˆ̄Y S

P P S 25.78753 25.75155 25.96188 26.01509
ˆ̄Y ∗

P P S 45.48179 38.31326 31.99815 26.00291
ˆ̄Y SP e

P S 47.85442 47.70897 48.04835 48.1066
ˆ̄Y ∗P e

P S 66.75625 60.55349 54.59974 48.12585
ˆ̄YT N 264.2669 328.707 389.3731 399.4471

.

Table 2: Percent relative efficiency of different estimators.

9 CONCLUSION
The objective of the present study is to develop the dual to separate ratio cum product type estimator
and analyzing its performance through simulation study. Section 5 of this paper shows the bias and
mean squared error of the developed estimator up to the first degree of approximation. In section 6, the
conditions under which the developed estimator performs better than other considered estimator have been
obtained up to the first degree of approximation. The theoretical bias comparison has also been shown in
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section 7. Section 8 shows the simulation study, where the performance of the developed estimator has
been analyzed as compared to other considered estimators at different sample sizes and it is also observed
that the mean squared error of the developed estimator is least at different sample sizes and decreases with
the increase in sample size. The percent relative efficiency of the developed estimator increases with the
increase in sample size and highest among all other estimators. Table 8.1 and 8.2 shows the mean squared
error and percent relative efficiency of all the estimators with respect to the usual mean estimator in case
of post stratification. Thus, the developed estimator performs better in terms of efficiency as compared
to all other estimators considered in this study. Hence, the developed estimator has been recommended
for the use in practice.
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Abstract
This paper is concerned with a modified genetic algorithms using balanced incomplete block designs(BIBD)
and balanced ternary designs (BTD). The different types of chromosomes of varying length and size have been
considered with the help of BIBD and BTD which are found to be adequate for their offsprings in the next
generations after applying the operator crossover and mutation. This has been illustrated with two examples,
one is based on BIBD and other, on BTD which are added at the end.

Keywords: Genetic algorithm, Balanced incomplete block design (BIBD), Balanced ternary design (BTD),
Crossover, Mutation, Offspring, Bits.

1 Introduction
Considerable evidences have been gathered by human biologists, geneticists ,demographers, social
scientists, data scientist and data analyst, machine learning engineers and operation research workers
during last few decades about the study of genetic algorithms in developing and developed countries
utilizing the different techniques based on various sets of data. It has been initially developed by John
Holland, his colleagues, his students at the University of Michigan with objective in two tires (i) to abstract
and rigorously explain to adaptive processes of natural systems and (ii) to design artificial systems software
that retains the important mechanisms of natural systems(Mitchell [8]; Lingarai [3]; Katoch et el.[6];
Goldberg[1]; Deb [5]; Dana-Bana-Hani [4]; Mullawaarchachi [7]; Jain [10]).

However, a genetic algorithm (GA) is a mathematical search algorithm based on the mechanics of
natural selection and natural genetics combining into survival of the fittest among string structures
including as a numerical optimization technique to be adequate for being applied to an extremely wide
range of problems. In every generation, a new set of artificial creatures / strings is created using bits and
pieces of the presence of genes to be a new part for next generation. They require the natural parameter
set of the optimization problem to be coded as a finite length string over some finite alphabet. Here, we
first code the switches as a finite length string. A simple code can be generated by considering a string
of n consisting of 1’s and 0’s where each of the switches is represented by a 1’s if the switch is on and
a 0’s if the switch is off. With this coding ,the string viz.,11110 codes the setting where the first four

© 2024 Author(s). (https://www.thegsa.in/).
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switches are on and the fifth switch is off. A simple GA that provides optimized results in many practical
situations that is composed of three operators, (i) Reproduction (ii) Crossover, and (iii) Mutation.

Moreover, reproduction is a process in which individual strings are copied according to their objective
function values, f (fitness function). It is to be noted that the function f is as some measure of profit,
utility, or goodness that we want to maximize or minimize. In order to copy strings, one should know
about the fitness function having high value that provide higher probability of contribution in one or
more off springs in next generation. This operator, eventually, is an artificial version of natural selection,
a Darvinian survival of the fittest among string creatures. Crossover is the most significant phase in a
genetic algorithm. For each pair of parents to be mated, a crossover point is chosen at random from within
the genes. Offspring are created by exchanging the genes of parents among themselves until the crossover
point is reached. Mutation occurs to maintain diversity within the population and prevent premature
convergence. Thus, the algorithm reflects the process of natural selection where the fittest individuals
are selected for reproduction in order to produce offspring of the next generation. The process of natural
selection starts with the selection of fittest individuals from a population. They produce offspring which
inherit the characteristics of the parents and will be added to the next generation. If parents have better
fitness, their offspring will be better than parents and have a better chance of surviving. This process
keeps on iterating and at the end, a new generation with the fittest individuals will be achieved. The
five phases are considered in a genetic algorithm. (i) Initial population (ii) Fitness function(iii) Selection
(iv) Crossover (v) Mutation. The process begins with a set of individuals which is called a population.
Each individual is a solution to the problem you want to solve. An individual is characterized by a set
of parameters (variables) known as genes and are joined into a string to form a chromosome (solution).
In a genetic algorithm, the set of genes of an individual is represented using a string, in terms of an
alphabet. Usually, binary values are used (string of 1’s and 0’s). It applies evolution concepts such
as reproduction and survival of the fittest to solve a variety of problems. In fact, it belongs to the larger
class of evolutionary algorithms considering a chromosome (sometimes referred to as a string). Each part
of a chromosome is called a “gene”while the value of each gene is called an “allele”.

The objective of the present paper is to develop and initialize the chromosomes population in the
form of 0’s and 1’s bits on the basis of BIBD and BTD (which is constructed with the help of BIBD)
as ‘presence’(1’s) or ‘absence’(0’s). An expression in general for the chromosomes length n has also
been considered about the phase of crossover and mutation along with the overall fitness in particular as
compared to the original one.

2 MATERIAL AND METHODS
BALANCED INCOMPLETE BLOCK DESIGN (BIBD)
A BIB design is an arrangement of v treatments in b blocks each of size k(< v) such that (i) Each
treatment occurs at most once in a block (ii) Each treatment occurs in exactly r blocks (iii) Each pair of
treatments occurs together in exactly λ blocks. Thus, the symbols v, b, r, k, λ are called the parameters
of the design and satisfy the following relations.

vr = bk, r(k − 1) = λ(v − 1) and b ≥ v.

BALANCED TERNARY DESIGN (BTD)
A balanced ternary design is a collection of B blocks, each of cardinality K (K ≤ V ), chosen from a set
of size V in such a way that each of the V treatments occurs R times altogether, each of the treatments
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occurring once in precisely in Q1 blocks and twice in precisely Q2 blocks, and with incidence matrix having
inner product of any two rows Λ is denoted by BTD (V, B, Q1, Q2, R, K, Λ). The following relations hold
in the case of BTD V R = BK , Λ(V − 1) = R(K − 1) − 2Q2 It is to be noted that Q1 + 2Q2 = R
(Gupta et el.,[2]; Sarvate and Seberry, [9]).

GENETIC ALGORITHM AND ITS CODED VALUES
In real-life problems, most decision variables are conditioned and bounded, mostly taking real numbers).
For example, if you had an optimization problem that aimed to maximize the profit or minimize the cost
for a certain multi-national company, it may desire to keep the maximum wages of labor hours providing
other conditions. The company would tend to set a maximum wages and minimum wages per month, for
example, it may say that the minimum and maximum wages of labor hours per week should not exceed
3000 to 8000, therefore, the lower bound of the wages of labor hours (x) would be 3000 and the upper
bound would be 8000 (3000 ≤ x ≤ 8000). It is to be noted that the decision variable wages of labor
hours (x) between bounds, calculating a real number for the hours can be generated as:

Figure 1: Each gene represents with its corresponding 2n image

For the chromosome in Figure 1, to be encoded with 0’s and 1’s each gene represents with 2n (2 to
the power of n, where n starts at 0,1 on the chromosome, i.e. 20, 21, 22, 23, · · · , 2n). In order to decode
GA chromosome into a real value, we use the following formula:

n∑

i=0

2i × bit
(upper limit − lower limit

(2n − 1)
)

+ lower limit. (1)

Thus, the chromosomes for our genetic algorithm will be sequences of 0’s and 1’s bits with a length
of n , and have a range from 0(00000 · · · , n) to n(11111 · · · , n).

The balanced ternary design (BTD) is constructed sometimes with the help of balanced incomplete
block design (BIBD) consisting of the symbols 0,1 and 2. If we assume that the genes of each chromosome
are represented by 0,1 and 2 in relation to the quality of genes such as recessive, heterozygote and
dominant characters respectively. In order to maximize a function, these genes of a chromosome may be
considered to prepare a model for genetic algorithms. The following table represents the initial population
of chromosomes on the basis BTD which has been constructed on the basis of BIBD in the form of the
symbols 0,1 and 2 respectively.

It is to be noted that the decision variable wages of labor hours (x) between bounds, calculating a real
number for the hours can be generated in the range of (0,1,2).i.e. three genes are considered together as

Figure 2: Each gene represents with its corresponding 3n image

For the chromosome in Figure 2, to be encoded with 0′s , 1′s and 2′s each gene represents with 3n

(3 to the power of n, where n starts at 0,1,2 on the chromosome, i.e.30, 31, 32, 33, · · · , 3n). In order to
decode GA chromosome into a real value, we use the following formula:
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n∑

i=0

3i × bit
(upper limit − lower limit

(3n − 1)
)

+ lower limit. (2)

Thus, the chromosomes for our genetic algorithm will be sequences of 0′s and 1′s bits with a length
of n, and have a range from 0 (00000 · · · , n), n(11111 · · · , n) and n(22222 · · · , n).

3 ILLUSTRATIVE EXAMPLES
EXAMPLE 3.1
Let us take a function to show that whether GA can improve the solution from one generation to next
generation for the following function to be maximized f(x) = x2 subject to the condition that 1 ≤ x ≤ 16
by considering the number and length of the chromosomes as 6 and 14 for the function to be maximized
as f(x) =

√
x subject to the condition that 1 ≤ x ≤ 25 respectively on the basis of symmetrical BIBD .

Chromosomes/ Initial Decoded X-Value f(x) = x2 Selection Expected
string No. population value(D) = D

( 16−1
23−1

)
+ 1 probability count

1 1 0 0 4 4 x (15/7)+1=9.57 91.58 0.178 1.07
2 0 1 0 2 2 x (15/7)+1= 5.28 27.88 0.054 0.32
3 0 0 1 1 1 x (15/7)+1=3.14 9.86 0.019 0.11
4 0 1 1 3 3 x (15/7)+1=7.43 55.2 0.107 0.65
5 1 0 1 5 5 x (15/7)+1=11.71 137.12 0.267 1.6
6 1 1 0 6 6 x (15/7)+1=13.86 192.1 0.374 2.24∑

fi = 513.84
f = 85.64

Table 1: The initial population, decoded value of x, fitness value f(x) along with selection probability of the
chromosomes 7 of length 7 on the basis of BIBD.

Actual count Mating Random Parents Crossover Offspring Mutation Decoded X-Value = f(x) = x2

Roulette wheel pool Mating pair Site value X = D
( 16−1

23−1

)
+ 1

1 1 0 0 1 1 0 0 1 | 0 0 1 0 1 1 0 1 5 5 x (15/7)+1=11.71 137.12
0 0 1 1 4 1 0 1 1 | 0 1 1 0 0 1 0 0 4 4 x (15/7)+1=9.57 91.58
0 1 0 1 2 0 1 1 0 1 | 1 0 1 0 1 1 0 6 6 x (15/7)+1=13.86 192.1
1 1 0 1 5 1 1 0 1 1 | 0 1 1 1 0 1 1 3 3 x (15/7)+1=7.43 55.2
2 1 1 0 3 1 0 1 1 | 0 1 1 1 0 1 1 0 6 6 x (15/7)+1=13.86 192.1
2 1 1 0 6 1 1 0 1 | 1 0 1 0 1 1 0 1 5 5 x (15/7)+1=11.71 137.12∑

fi = 805.22
f = 134.20

Maximum f = 134.20

Table 2: The actual count Roulette wheel, mating pool, mating pair, parents, crossover, offspring and mutation of
fourteen chromosomes given in Table 1 for value of n = 6

In order to generate the number and length of the chromosomes as 14 and 7 respectively, we consider
the BIBD as 7,7,3,3,1 and its complement as 7,7,4,4,2 in the form of incidence matrix of symbols (0,1)
and signify 1 as presence and 0 as the absence of the genes involved in the chromosomes. Seven number
of chromosomes having length 7 on the basis of BIBD and put in the form of binary number as 0 and 1
and 13 number of chromosomes having length four on the basis of BTD are considered in Table 1 and
Table 2 respectively for maximizing the function f(x) = x2 subject to the condition that 1 ≤ x ≤ 16.
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Chromosomes/ Initial Decoded X-Value = f(x) =
√

x Selection Expected
string No. population value(D) D

( 16−1
23−1

)
+ 1 probability Count

1 1 1 0 1 0 0 0 104 20.654 4.545 0.0928 1.3
2 0 1 1 0 1 0 0 52 10.827 3.29 0.0672 0.94
3 0 0 1 1 0 1 0 26 5.913 2.432 0.0497 0.7
4 0 0 0 1 1 0 1 13 3.457 1.859 0.038 0.53
5 1 0 0 0 1 1 0 70 14.228 3.772 0.077 1.08
6 0 1 0 0 0 1 1 35 7.614 2.759 0.0563 0.79
7 1 0 1 0 0 0 1 81 15.307 3.912 0.0799 1.12
8 0 0 1 0 1 1 1 23 5.346 2.312 0.0472 0.66
9 1 0 0 1 0 1 1 75 15.173 3.895 0.0795 1.11
10 1 1 0 0 1 0 1 101 21.220 4.607 0.0941 1.32
11 1 1 1 0 0 1 0 114 22.543 4.748 0.097 1.36
12 0 1 1 1 0 0 1 57 11.772 3.431 0.0701 0.98
13 1 0 1 1 1 0 0 92 18.386 4.288 0.0876 1.23
14 0 1 0 1 1 1 0 46 9.693 3.113 0.0636 0.89∑

fi=48.963
f=3.497

Maximum f=4.748

Table 3: The initial population ,decoded value of x, fitness value f(x) along with selection probability of the
chromosomes 7 of length 7 on the basis of BIBD.

Actual count Mating pool Random Parents Crossover Offspring Mutation
Roulette wheel Mating pair site

1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 | 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1
1 0 1 1 0 1 0 0 8 0 0 1 0 1 1 1 0 0 1 | 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0
1 0 0 1 1 0 1 0 2 0 1 1 0 1 0 0 0 1 | 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1
1 0 0 0 1 1 0 1 9 1 0 0 1 0 1 1 1 0 | 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0
1 1 0 0 0 1 1 0 3 0 0 1 1 0 1 0 0 0 1 1 | 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1
1 0 1 0 0 0 1 1 10 1 1 0 0 1 0 1 1 1 0 0 | 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0
1 1 0 1 0 0 0 1 4 0 0 0 1 1 0 1 0 0 0 1 | 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0
1 0 0 1 0 1 1 1 11 1 1 1 0 0 1 0 1 1 1 0 | 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1
1 1 0 0 1 0 1 1 5 1 0 0 0 1 1 0 1 0 | 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1
1 1 1 0 0 1 0 1 12 0 1 1 1 0 0 1 0 1 | 1 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0
1 1 1 1 0 0 1 0 6 0 1 0 0 0 1 1 0 1 0 | 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0
1 0 1 1 1 0 0 1 13 1 0 1 1 1 0 0 1 0 1 |1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1
1 1 0 1 1 1 0 0 7 1 0 1 0 0 0 1 1 0 1 0 | 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1 1 0
1 0 1 0 1 1 1 0 14 0 1 0 1 1 1 0 0 1 0 1 | 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1

Mutation Decoded value X X-Value = D
(

16−1
23−1

)
+ 1 f(x) =

√
x

1 1 0 0 0 1 1 99 99 x (24/127)+1=19.709 4.439
0 0 1 1 1 0 0 28 28 x (24/127)+1=6.291 2.508
0 1 1 1 0 1 1 59 59x (24/127)+1=12.150 3.486
1 0 0 0 1 0 0 68 68x (24/127)+1=13.850 3.722
0 0 1 1 1 0 1 28 28 x (24/127)+1=6.291 2.508
1 1 0 0 0 1 0 98 98 x (24/127)+1=19.520 4.418
0 1 0 1 0 1 0 42 42 x (24/127)+1=8.937 2.989
1 0 1 0 1 0 1 85 85 x (24/127)+1=17.063 4.131
1 0 0 1 0 0 1 73 73 x (24/127)+1=14.795 3.846
0 1 1 0 1 1 0 54 54 x (24/127)+1=11.205 3.347
0 1 0 1 1 1 0 46 46 x (24/127)+1=9.693 3.113
1 0 1 0 0 0 1 81 81 x (24/127)+1=16.307 4.038
0 0 1 0 1 1 0 22 22 x (24/127)+1=5.157 2.271
1 1 0 1 0 0 1 105 105 x (24/127)+1=20.843 4.565∑

fi =49.381
f =3.527

Maximum f=4.565

Table 4: The actual count Roulette wheel, mating pool, mating pair, parents, crossover, offspring and mutation of
fourteen chromosomes given in Table 1 for value of n = 6
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EXAMPLE 3.2
Twelve number of chromosomes having length 4 on the basis of balanced ternary design (BTD) and
arrange in the form of binary numbers as 0 , 1 and 2 for the function to be maximized f(x) =

√
x subject

to the condition that 1 ≤ x ≤ 25 (Table 5).
With the existing BIB design, a self complementary BIB design can be generated ( Mitra and

Mandal,1998). In this case a self complementary BIB design which consists of the following parameters
as v = 4, b = 6, r = 3, k = 2 and λ = 1 whose six blocks are given as (1,4) (2,4), (3,4),(2,3), (1,3) and
(1,2).

Then balanced ternary design (BTD) are constructed by taking the combinations of above two blocks
together at a time whose parameters are as follows:

V = 4, B = 15, Q1 = 9, Q2 = 3, R = 15, K = 4 and Λ = 13.
(1,4,2,4), (1,4,3,4), (1,4,2,3), (1,4,1,3), (1,4,1,2), (2,4,3,4), (2,4,2,3), (2,4,1,3),

(2,4,1,2), (3,4,2,3), (3,4,1,3), (3,4,1,2), (2,3,1,3), (2,3,1,2), (1,3,1,2).
But the block numbers (iii), (viii) and (xii) (highlighted by red colour) are repeated blocks. Therefore,

these three blocks are deleted. Then , we have the remaining twelve blocks which consists of BTD
parameters as V = 4, B = 12, Q1 = 6, Q2 = 3, R = 12, K = 4 and Λ = 10 which satisfy the parametric
relations of BTD. After converting these 12 blocks in the form of incidence matrix whose blocks are given
below:

(2 1 1 0 ), (1 1 2 0), (2 0 1 1), (1 0 2 1), (1 2 1 0), (2 1 0 1),

(1 2 0 1), (0 2 1 1), (0 1 2 1), (1 1 0 2) , (1 0 1 2 ), and (0 1 1 2).
These twelve blocks are used to represent 12 chromosomes of length 4 in genetic algorithms.

Chromosomes/ Initial Decoded X-Value = f(x) =
√

x Selection Expected
string No. population value(D) D

( 16−1
34−1

)
+ 1 probability count

1 2 1 1 0 66 66 x (24/80)+1=20.80 4.56 0.1076 1.3
2 1 1 2 0 42 42 x (24/80)+1= 13.60 3.69 0.0873 1.0
3 2 0 1 1 58 58 x (24/80)+1= 18.40 4.29 0.1012 1.2
4 1 0 2 1 34 34 x (24/80)+1= 11.20 3.35 0.0790 0.9
5 1 2 1 0 48 48 x (24/80)+1= 15.40 3.92 0.0925 1.1
6 2 1 0 1 64 64 x (24/80)+1= 20.2 4.49 0.1059 1.3
7 1 2 0 1 46 46 x (24/80)+1= 14.80 3.85 0.0908 1.1
8 0 2 1 1 22 22 x (24/80)+1= 7.60 2.76 0.0651 0.8
9 0 1 2 1 16 16 x (24/80)+1= 5.80 2.41 0.0569 0.7
10 1 1 0 2 38 38 x (24/80)+1= 12.40 3.52 0.0831 1.0
11 1 0 1 2 32 32 x (24/80)+1= 10.60 3.26 0.0769 0.9
12 0 1 1 2 14 14x (24/80)+1= 5.20 2.28 0.0538 0.6∑

fi = 42.38
f = 3.532 0.0833

Maximum f = 4.56

Table 5: The initial population, decoded value of x, fitness value f(x) along with selection probability of the
chromosomes 12 of length 4 on the basis of BTD.
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Actual count Mating Random Parents Crossover Offspring Mutation
Roulette wheel pool Mating pair site

2 2 1 1 0 1 2 1 1 0 2 1 | 1 0 2 1 0 1 2 1 0 1
1 2 1 1 0 8 2 1 0 1 2 1 | 0 1 2 1 1 0 2 1 1 0
2 1 1 2 0 2 2 1 1 0 2 1 | 1 0 2 1 0 1 2 1 0 1
0 2 0 1 1 9 2 1 0 1 2 1 | 0 1 2 1 1 0 2 1 1 0
2 2 0 1 1 3 1 1 2 0 1 1 2 | 0 1 1 2 1 1 1 2 1
2 1 2 1 0 10 1 2 0 1 1 2 0 | 1 1 2 0 0 1 2 0 0
2 1 2 1 0 4 2 0 1 1 2 0 | 1 1 2 0 0 1 2 2 0 1
0 2 1 0 1 11 1 2 0 1 1 2 | 0 1 1 2 1 1 1 0 1 1
0 2 1 0 1 5 2 0 1 1 2 0 1 | 1 2 0 1 2 2 0 1 2
1 1 2 0 1 12 1 1 0 2 1 1 0 | 2 1 1 0 1 1 1 0 1
0 1 2 0 1 6 1 2 1 0 1 2 | 1 0 1 2 2 2 1 2 1 2
0 1 1 0 2 13 2 2 2 2 2 2 | 2 2 2 2 1 0 2 2 2 0

Mutation Decoded value X X-Value = D
(

25−1
34−1

)
+ 1 f(x) =

√
x

2 1 0 1 64 64 x (24/80)+1=20.20 4.49
1 2 1 0 48 48 x (24/80)+1=15.40 3.92
2 1 0 1 64 64 x (24/80)+1=20.20 4.49
2 1 1 0 66 66 x (24/80)+1=20.80 4.56
1 1 2 1 43 43 x (24/80)+1=13.90 3.73
2 1 0 0 63 63 x (24/80)+1=19.90 4.46
2 2 0 1 58 58 x (24/80)+1=18.40 4.29
2 0 1 1 46 46x (24/80)+1=14.80 3.85
1 2 0 1 58 58 x (24/80)+1=18.40 4.29
2 0 1 1 46 46 x (24/80)+1=14.80 3.85
1 2 0 1 50 50 x (24/80)+1=16.00 4.00
1 2 1 2 36 36 x (24/80)+1=11.80 3.44∑

fi = 49.37
f = 4.114

Maximum f = 4.56

Table 6: The actual count Roulette wheel, mating pool, mating pair, parents, crossover, offspring and mutation of
fourteen chromosomes given in Table 1 for value of n = 6.

4 Conclusion
The above final tables reveal that there is an improvement in the maximization of the function of the two
functions namely f(x) = x2 and f(x) =

√
x in the range of 1 ≤ x ≤ 16 and 1 ≤ x ≤ 25 respectively.

The improvement in genetic algorithms have been achieved using BIBD and BTD on the basis of incidence
matrix having the various kinds of number of chromosomes and their length. Thus, genetic algorithm
may tackle the problem of integer programming with more precision. It is started with a initial population
randomly and out of these one solution may be found as global optimal solution. This paper can also
be extended by choosing appropriate techniques consisting of the values 0 and 1 that should lie within a
certain specified range.
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Abstract
We have developed a class of estimators for estimating the population mean based on two auxiliary variables in
simple random sampling without replacement (SRSWOR) scheme. Expressions of bias and mean squared error
of the proposed class of estimators are obtained up to the first order of approximation. Optimum conditions are
obtained at which the proposed class of estimators yields minimum mean squared error. We have compared the
proposed class of estimators with some existing estimators ˆ̄YS(R), ˆ̄YS(RExp), ˆ̄YS(D1), ˆ̄YS(RP ), ˆ̄YS(RP Exp), ˆ̄YS(D2),
ˆ̄YS(MSK) and ˆ̄YS(SG). The properties of the suggested class of estimators are also discussed in stratified random
sampling. An empirical study is conducted in support of the present study.

Keywords: Study variable, Auxiliary variable, Bias, Mean squared error, Simple random sampling, Stratified
random sampling.
Mathematics Subject Classification Code- 62D05

1 Introduction
Consider a finite population U = {U1, U2, ...UN} of N identifiable units with study variable Y and auxiliary
variables (X,Z ) defined on U taking the values yi and (xi, zi) for unit Ui of U respectively. We define

Ȳ = 1
N

∑N
i=1 yi: Population mean of the study variable Y,

X̄ = 1
N

∑N
i=1 xi: Population mean of the auxiliary variable X,

Z̄ = 1
N

∑N
i=1 zi: Population mean of the auxiliary variable Z,

S2
y = 1

(N−1)
∑N

i=1

(
yi − Ȳ

)2
: Population mean square of the study variable Y,

S2
x = 1

(N−1)
∑N

i=1

(
xi − X̄

)2
: Population mean square of the auxiliary variable X,

S2
z = 1

(N−1)
∑N

i=1

(
zi − Z̄

)2
: Population mean square of the auxiliary variable Z,

Cy = Sy

Ȳ
, Cx = Sx

X̄
and Cz = Sz

Z̄
are the coefficient of variation of the study and auxiliary variable Y,

X and Z respectively.
Syx = 1

N−1
∑N

i=1

(
yi − Ȳ

) (
xi − X̄

)
: Covariance between the study variable Y and auxiliary variable

X.

© 2024 Author(s). (https://www.thegsa.in/).
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Syz = 1
N−1

∑N
i=1

(
yi − Ȳ

) (
zi − Z̄

)
: Covariance between the study variable Y and auxiliary variable

Z.
Sxz = 1

N−1
∑N

i=1

(
xi − X̄

) (
zi − Z̄

)
: Covariance between the auxiliary variables X and Z.

ρyx = Syx

SySx
, ρyz = Syz

SySz
and ρxz = Sxz

SxSz
are the correlation coefficient between the study and auxiliary

variables (y, x) , (y, z) and (x, z) respectively.
A simple random sample of size n is drawn without replacement (WOR) method from the population

U for estimating the population mean Ȳ . Let yi, xi and zi be the values of the study and auxiliary variables
on the ith units (i = 1,2,. . . ,N). let

ȳ = 1
n

∑n
i=1 yi: Sample mean of the study variable Y.

x̄ = 1
n

∑n
i=1 xi: Sample mean of the auxiliary variable X.

z̄ = 1
n

∑n
i=1 zi: Sample mean of the auxiliary variable Z.

To obtain the bias and mean squared error (MSE ) of the proposed class of estimators, we define the
following error terms

e0 = (ȳ−Ȳ )
Ȳ

, e1 = (x̄−X̄)
X̄

and e2 = (z̄−Z̄)
Z̄

such that

E (e0) = E (e1) = E (e2) = 0

and
E
(
e2

0

)
=
(

1 − f

n

)
C2

y , E
(
e2

1

)
=
(

1 − f

n

)
C2

x, E
(
e2

2

)
=
(

1 − f

n

)
C2

z ,

E (e0e1) =
(

1−f
n

)
ρyxCyCx, E (e0e2) =

(
1−f

n

)
ρyzCyCz and E (e1e2) =

(
1−f

n

)
ρxzCxCz.

where f = n
N

is the sampling fraction.
Sample mean estimator for population mean Ȳ is defined as

ˆ̄YS(0) = ȳ (1)

The variance/MSE of ȳ is given by

V ar
(

ˆ̄YS(0)

)
= MSE

(
ˆ̄YS(0)

)
=
(

1 − f

n

)
Ȳ 2C2

y . (2)

Ratio estimator for Ȳ is given by
ˆ̄YS(R) = ȳ

(
X̄

x̄

)
, (3)

The MSE of the ratio estimator ˆ̄YS(R) to the first degree of approximation is given by

MSE
(

ˆ̄YS(R)

)
=
(

1 − f

n

)
Ȳ 2

[
C2

y + C2
x − 2ρyxCyCx

]
, (4)

Ratio-type exponential estimator is given by

ˆ̄YS(RExp) = ȳ exp
(

X̄ − x̄

X̄ + x̄

)
, (5)

The MSE of ˆ̄YS(RExp) to the first degree of approximation is given by

MSE
(

ˆ̄YS(RExp)

)
=
(

1 − f

n

)
Ȳ 2

[
C2

y + 1
4C2

x − ρyxCyCx

]
. (6)
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Difference estimator for single auxiliary variable is defined by

ˆ̄YS(D1) = ȳ + d0
(
X̄ − x̄

)
, (7)

where d0 is constant.
The minimum MSE of the difference estimator ˆ̄YS(D1) at optimum value of d0 i.e., d0(opt) = ρyxCyCx

C2
x

,
is given by

MSEmin

(
ˆ̄YS(D1)

)
∼=
(

1 − f

n

)
Ȳ 2C2

y

(
1 − ρ2

yx

)
. (8)

Ratio cum product type estimator is defined by

ˆ̄YS(RP ) = ȳ

(
X̄

x̄

) (
z̄

Z̄

)
(9)

The MSE of ˆ̄YS(RP ) to first degree of approximation is given by

MSE
(

ˆ̄YS(RP )

)
= Ȳ 2

(
1 − f

n

) [
C2

y + C2
x + C2

z − 2ρyxCyCx + 2ρyzCyCz − 2ρxzCxCz

]
(10)

Upadhyaya et. al. [11] proposed an exponential ratio cum product type estimator for two auxiliary
variable as

ˆ̄YS(RP Exp) = ȳ exp
(

X̄ − x̄

X̄ + x̄

)
exp

(
z̄ − Z̄

z̄ + Z̄

)
(11)

The MSE of ˆ̄YS(RP Exp) to the first degree of approximation is given by

MSE
(

ˆ̄YS(RP Exp)

)
= Ȳ 2

(
1 − f

n

) [
C2

y + 1
4C2

x + 1
4C2

z − ρyxCyCx + ρyzCyCz − 1
2ρxzCxCz

]
(12)

Traditional difference estimator for two auxiliary variables is defined by

ˆ̄YS(D2) =
{
ȳ + d1

(
X̄ − x̄

)
+ d2

(
Z̄ − z̄

)}
, (13)

where d1 and d2 are constants whose values are to be determined.
Minimum MSE of ˆ̄YS(D2) at optimum values of d1 and d2 i.e., d1(opt) = R1Cy(ρyx−ρyzρxz)

Cx(1−ρ2
xz) and

d2(opt) = R2Cy(ρyz−ρyxρxz)
Cz(1−ρ2

xz) , is given by

MSEmin

(
ˆ̄YS(D2)

)
∼=
(

1 − f

n

)
Ȳ 2C2

y

(
1 − R2

y.xz

)
, (14)

where R2
y.xz = ρ2

yx+ρ2
yz−2ρyxρyzρxz

1−ρ2
xz

is the multiple correlation coefficient, R1 = Ȳ
X̄

and R2 = Ȳ
Z̄

.
Motivated by Gupta and Shabbir [4] and Singh and Singh [14], Muneer et. al. [8] proposed the

following general class of estimators

ˆ̄YS(MSK) =
[
k1ȳ − k2

(
x̄ − X̄

)] [
α

{
2 − exp

(
z̄ − Z̄

z̄ + Z̄

)
+ (1 − α) exp

(
Z̄ − z̄

Z̄ + z̄

)}]
(15)

where (ki, i = 1, 2) are unknown constants whose values are to be determined.
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The minimum MSE of ˆ̄YS(MSK) at the optimum values of k1 and k2 to the first degree of approximation
is given by

MSEmin

(
ˆ̄YS(MSK)

)
= Ȳ 2

[
1 −

(
1 − f

n

)
(ρxzCxCz)2

4C2
x

− U2
1

U2

]
(16)

where

U1 = 1 +
(3

8 − α

4

)(1 − f

n

)
C2

z − 1
2

(
1 − f

n

)
ρyzCyCz −

(
1 − f

n

)
ρxzCxCz (ρxzCxCz − ρyxCyCx)

2C2
x

and

U2 = 1+
(

1 − f

n

)
C2

y +
(

1 − α

2

)(1 − f

n

)
C2

z −2
(

1 − f

n

)
ρyzCyCz −

(
1 − f

n

)
(ρxzCxCz − ρyxCyCx)2

C2
x

.

Motivated by Gupta and Shabbir [4] and Grover and Kaur [3], Shabbir and Gupta [12] proposed a
difference-cum-exponential ratio type estimator as

ˆ̄YS(SG) =
{
d1ȳ + d2

(
X̄ − x̄

)
+ d3

(
Z̄ − z̄

)}
exp

(
X̄ − x̄

X̄ + x̄

)
, (17)

where di (i = 1, 2, 3) are constants.
Minimum mean squared error of Shabbir and Gupta [12] estimator is given by

MSEmin

(
ˆ̄YS(SG)

)
= Ȳ 2





1 −

(
1 + 1

64

(
1−f

n

)2
C4

x

)
+ 1

4

(
1−f

n

)2
C2

y C2
x

(
1 − R2

y.xz

)

1 +
(

1−f
n

)
C2

y

(
1 − R2

y.xz

)





(18)

In section 2 of this paper, we have proposed a class of estimators for population mean based on
two auxiliary variables in simple random sampling and studied its properties up to the first order of
approximation. Its stratified version has also been discussed in section 6. Theoretically and empirically we
have shown that the proposed class of estimators is better than existing estimators in both simple random
sampling and stratified random sampling.

2 Developed Estimator
Considering the same approach by Koyuncu [7], we have suggested the following class of estimators of
population mean based on two auxiliary variables (x,z) as

TS =
{

w0ȳ + w1

(
x̄

X̄

)α1

+ w2

(
z̄

Z̄

)α2}
exp





δ1
(
X̄ − x̄

)

X̄ + x̄



 exp





δ2
(
Z̄ − z̄

)

Z̄ + z̄



 , (19)

where (w0, w1, w2) are suitably chosen weights and (α1, α2, δ1, δ2) are design parameters.
Expanding (19) by using error terms, we have

TS =
[
w0Ȳ (1 + e0) + w1 (1 + e1)α1 + w2 (1 + e2)α2

]
exp

{
−δ1e1

2 + e1

}
exp

{
−δ2e2

2 + e2

}
. (20)
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Expanding RHS of (20), multiplying and omitting the terms of e’s having power greater than two, we
have

TS =




w0Ȳ
{
1 + e0 −

(
δ1e1+δ2e2

2

)
−
(

δ1e0e1+δ2e0e2
2

)
+ δ1(δ1+2)

8 e2
1 + δ1δ2

4 e1e2 + δ2(δ2+2)
8 e2

2

}

+ w1
R1X̄

{
1 + θ1e1 − δ2

2 e2 + θ1(θ1−1)
8 e2

1 − δ2θ1
2 e1e2 + δ2(δ2+2)

8 e2
2

}

+ w2
R2Z̄

{
1 + θ2e2 − δ1

2 e1 + δ1(δ1+2)
8 e2

1 − δ1θ2
2 e1e2 + θ2(θ2−1)

8 e2
2

}




or

(
TS − Ȳ

)
=




w0Ȳ





1 + e0 −
(

δ1e1+δ2e2
2

)
−
(

δ1e0e1+δ2e0e2
2

)
+ δ1(δ1+2)

8 e2
1 + δ1δ2

4 e1e2

+ δ2(δ2+2)
8 e2

2





+ w1
R1X̄

{
1 + θ1e1 − δ2

2 e2 + θ1(θ1−1)
2 e2

1 − δ2θ1
2 e1e2 + δ2(δ2+2)

8 e2
2

}

+ w2
R2Z̄

{
1 + θ2e2 − δ1

2 e1 + δ1(δ1+2)
8 e2

1 − δ1θ2
2 e1e2 + θ2(θ2−1)

2 e2
2

}
− Ȳ




(21)

where θ1 = (2α1−δ1)
2 and θ2 = (2α2−δ2)

2 .
On taking expectation on both sides of (21), we get the bias of the proposed estimator TS upto first

order of approximation as

B (TS) = Ȳ [w0A6 + w1A7 + w2A8 − 1] , (22)
where

A6 =
[
1 + (1 − f)

n

{
δ1 (δ1 + 2)

8 C2
x + δ1δ2

4 ρxzCxCz + δ2 (δ2 + 2)
8 C2

z − 1
2 (δ1ρyxCyCx + δ2ρyzCyCz)

}]
,

A7 = 1
R1X̄

[
1 + (1 − f)

n

{
θ1 (θ1 − 1)

2 C2
x − δ2θ1

2 ρxzCxCz + δ2 (δ2 + 2)
8 C2

z

}]
,

A8 = 1
R2Z̄

[
1 + (1 − f)

n

{
δ1 (δ1 + 2)

8 C2
x − δ1θ2

2 ρxzCxCz + θ2 (θ2 − 1)
2 C2

z

}]
.

On squaring both sides of (21), omitting terms of e’s having power greater than two and then taking
expectation on both sides we get the MSE of the proposed class of estimators TS to the first degree of
approximation as

MSE (TS) = Ȳ 2
[

1 + w2
0A0 + w2

1A1 + w2
2A2 + 2w0w1A3 + 2w0w2A4 + 2w1w2A5

−2w0A6 − 2w1A7 − 2w2A8

]
, (23)

where

A0 =
[
1 + (1 − f)

n

{
C2

y + δ1 (δ1 + 1)
2 C2

x + δ1δ2ρxzCxCz + δ2 (δ2 + 1)
2 C2

z − 2 (δ1ρyxCyCx + δ2ρyzCyCz)
}]

,

A1 = 1
R2

1X̄2

[
1 + (1 − f)

n

{
θ1 (2θ1 − 1) C2

x − 2θ1δ2ρxzCxCz + δ2 (δ2 + 1)
2 C2

z

}]
,

A2 = 1
R2

2Z̄2

[
1 + (1 − f)

n

{
δ1 (δ1 + 1)

2 C2
x − 2δ1θ2ρxzCxCz + θ2 (2θ2 − 1) C2

z

}]
,
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A3 = 1
R1X̄

[
1 + (1 − f)

n

{
(α1 − δ1) ρyxCyCx − δ2ρyzCyCz + (α1−δ1)(α1−δ1−1)

2 C2
x

−δ2 (α1 − δ1) ρxzCxCz + δ2(δ2+1)
2 C2

z

}]
,

A4 = 1
R2Z̄

[
1 + (1 − f)

n

{
(α2 − δ2) ρyzCyCz + δ1(δ1+1)

2 C2
x − δ1 (α2 − δ2) ρxzCxCz

+ (α2−δ2)(α2−δ2−1)
2 C2

z

}]
,

A5 = 1
R1R2X̄Z̄

[
1 + (1 − f)

n

{ (α1−δ1)(α1−δ1−1)
2 C2

x + (α2−δ2)(α2−δ2−1)
2 C2

z

+ (α1 − δ1) (α2 − δ2) ρxzCxCz

}]

A6, A7 and A8 are same as defined earlier.
To find the optimum values of (w0, w1, w2 ), minimization of MSE (TS) at (23) with respect to

(w0, w1, w2 ), which yields



A0 A3 A4
A3 A1 A5
A4 A5 A2







w0
w1
w2


 =




A6
A7
A8


 (24)

and after simplifying (24), the optimum values are

w0(opt) = ∆0
∆ ,

w1(opt) = ∆1
∆ ,

w2(opt) = ∆2
∆ .





(25)

where

∆ =

∣∣∣∣∣∣∣

A0 A3 A4
A3 A1 A5
A4 A5 A2

∣∣∣∣∣∣∣
= A0

(
A1A2 − A2

5

)
− A3 (A2A3 − A4A5) + A4 (A3A5 − A1A4) ,

∆0 =

∣∣∣∣∣∣∣

A6 A3 A4
A7 A1 A5
A8 A5 A2

∣∣∣∣∣∣∣
= A6

(
A1A2 − A2

5

)
− A3 (A2A7 − A5A8) + A4 (A5A7 − A1A8) ,

∆1 =

∣∣∣∣∣∣∣

A0 A6 A4
A3 A7 A5
A4 A8 A2

∣∣∣∣∣∣∣
= A0 (A2A7 − A5A8) − A6 (A2A3 − A4A5) + A4 (A3A8 − A4A7) ,

∆2 =

∣∣∣∣∣∣∣

A0 A3 A6
A3 A1 A7
A4 A5 A8

∣∣∣∣∣∣∣
= A0 (A1A8 − A5A7) − A3 (A3A8 − A4A7) + A6 (A3A5 − A1A4) .

Thus the resulting minimum MSE of TS is given by

MSEmin (TS) = Ȳ 2
[
1 − (A6∆0 + A7∆1 + A8∆2)

∆

]
. (26)

3 Special Cases
1. For w2 = 0, the proposed class of estimators reduces to:
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TS(1) =
[
w0ȳ + w1

(
x̄

X̄

)α1]
exp





δ1
(
X̄ − x̄

)

X̄ + x̄



 exp





δ2
(
Z̄ − z̄

)

Z̄ + z̄



 (27)

Bias and MSE of TS(1) are respectively given as

B
(
TS(1)

)
= Ȳ [w0A6 + w1A7 − 1] , (28)

and
MSE

(
TS(1)

)
= Ȳ 2

[
1 + w2

0A0 + w2
1A1 + 2w0w1A3 − 2w0A6 − 2w1A7

]
. (29)

Minimizing (29) with respect to (w0, w1) yields,
[

A0 A3
A3 A1

] [
w0
w1

]
=
[

A6
A7

]
(30)

After simplifying (30), we obtain the optimum values of (w0, w1) as

w∗
0 = ∆∗

0
∆∗ ,

w∗
1 = ∆∗

1
∆∗ .

}
(31)

Thus the resulting minimum MSE of TS(1) is

MSEmin
(
TS(1)

)
= Ȳ 2

[
1 − (A6∆∗

0 + A7∆∗
1)

∆∗

]
. (32)

where
∆∗ =

∣∣∣∣∣
A0 A3
A3 A1

∣∣∣∣∣ =
(
A0A1 − A2

3

)

∆∗
0 =

∣∣∣∣∣
A6 A3
A7 A1

∣∣∣∣∣ = (A1A6 − A3A7)

∆∗
1 =

∣∣∣∣∣
A0 A6
A3 A7

∣∣∣∣∣ = (A0A7 − A3A6) .

2. For w1 = 0, the proposed class of estimators reduces to:

TS(2) =
[
w0ȳ + w2

(
z̄

Z̄

)α2]
exp





δ1
(
X̄ − x̄

)

X̄ + x̄



 exp





δ2
(
Z̄ − z̄

)

Z̄ + z̄



 (33)

Bias and MSE of TS(2) are respectively given as

B
(
TS(2)

)
= Ȳ [w0A6 + w2A8 − 1] , (34)

and
MSE

(
TS(2)

)
= Ȳ 2

[
1 + w2

0A0 + w2
2A2 + 2w0w2A4 − 2w0A6 − 2w2A8

]
. (35)

Minimizing (35) with respect to (w0, w2) yields,
[

A0 A4
A4 A2

] [
w0
w2

]
=
[

A6
A8

]
(36)
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After simplifying (36), we obtain the optimum values of (w0, w2) as

w∗∗
0 = ∆∗∗

0
∆∗∗ ,

w∗∗
2 = ∆∗∗

2
∆∗∗ .

}
(37)

Thus the resulting minimum MSE of TS(2) is

MSEmin
(
TS(2)

)
= Ȳ 2

[
1 − (A6∆∗∗

0 + A8∆∗∗
2 )

∆∗∗

]
. (38)

where

∆∗∗ =
∣∣∣∣∣

A0 A4
A4 A2

∣∣∣∣∣ =
(
A0A2 − A2

4

)

∆∗∗
0 =

∣∣∣∣∣
A6 A4
A8 A2

∣∣∣∣∣ = (A6A2 − A4A8)

∆∗∗
2 =

∣∣∣∣∣
A0 A6
A4 A8

∣∣∣∣∣ = (A0A8 − A4A6) .

4 Efficiency Comparison
From (2), (4), (6) and (8) respectively, we have

MSE
(

ˆ̄YS(0)

)
− MSEmin

(
ˆ̄YS(D1)

)
=
(

1 − f

n

)
Ȳ 2C2

y ρ2
yx ≥ 0. (39)

MSE
(

ˆ̄YS(R)

)
− MSEmin

(
ˆ̄YS(D1)

)
=
(

1 − f

n

)
Ȳ 2

[
C2

y ρ2
yx − 2ρyxCyCx + C2

x

]
≥ 0. (40)

MSE
(

ˆ̄YS(RExp)

)
− MSEmin

(
ˆ̄YS(D1)

)
=
(

1 − f

n

)
Ȳ 2

[
C2

y ρ2
yx − ρyxCyCx + 1

4C2
x

]
≥ 0. (41)

It follows from (39), (40), and (41) that the difference estimator for single auxiliary variable is more
efficient than ˆ̄YS(0), ˆ̄YS(R) and ˆ̄YS(RExp).

From (10) and (14), we have

MSE
(

ˆ̄YS(RP )

)
− MSEmin

(
ˆ̄YS(D2)

)

=
(

1 − f

n

)
Ȳ 2

[
C2

y R2
y.xz + C2

x + C2
z − 2ρyxCyCx + 2ρyzCyCz − 2ρxzCxCz

]

≥ 0. (42)

Thus from (42), the difference estimator for two auxiliary variable is more efficient than ˆ̄YS(RP ).
From (12) and (14), we have
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MSE
(

ˆ̄YS(RP Exp)

)
− MSEmin

(
ˆ̄YS(D2)

)

=
(

1 − f

n

)
Ȳ 2

[
C2

y R2
y.xz + 1

4C2
x + 1

4C2
z − ρyxCyCx + ρyzCyCz − 1

2ρxzCxCz

]

≥ 0. (43)

Thus from (43), the difference estimator for two auxiliary variable is more efficient than ˆ̄YS(RP Exp).
From (8) and (14), we have

MSEmin

(
ˆ̄YS(D1)

)
− MSEmin

(
ˆ̄YS(D2)

)
=
(

1 − f

n

)
Ȳ 2C2

y

(
R2

y.xz − ρ2
yx

)
≥ 0. (44)

From (39), (40), (41) and (44), we have the following inequalities:

MSEmin

(
ˆ̄YS(D2)

)
≤ MSEmin

(
ˆ̄YS(D1)

)
≤ MSE

(
ˆ̄YS(0)

)
(45)

MSEmin

(
ˆ̄YS(D2)

)
≤ MSEmin

(
ˆ̄YS(D1)

)
≤ MSE

(
ˆ̄YS(R)

)
(46)

MSEmin

(
ˆ̄YS(D2)

)
≤ MSEmin

(
ˆ̄YS(D1)

)
≤ MSE

(
ˆ̄YS(RExp)

)
(47)

Hence ˆ̄YS(D2) is more efficient than the sample mean, ratio-type, ratio-type exponential and difference
estimator for single auxiliary variable.

From (14) and (26), we have that
MSEmin (TS) ≤ MSEmin

(
ˆ̄YS(D2)

)
if

[(
1 − f

n

)
C2

y

(
1 − R2

y.xz

)]
≥
[
1 − (A6∆0 + A7∆1 + A8∆2)

∆

]
(48)

Thus the proposed estimator TS is more efficient than the difference estimator for two auxiliary variables
as long as the condition (48) holds.

Further from (42) to (47), we can see that our proposed class of estimators TS is also more efficient
than the sample mean, ratio-type, ratio-type exponential, difference estimator for single auxiliary variable,
ratio cum product-type estimator and ratio cum product-type exponential estimators.

From (16) and (26), we have
MSEmin (TS) ≤ MSEmin

(
ˆ̄YS(MSK)

)
if

[
(A6∆0 + A7∆1 + A8∆2)

∆

]
≥
[(

1 − f

n

)
(ρxzCxCz)2

C2
x

− U2
1

U2

]
(49)

Thus the proposed estimator TS is more efficient than Muneer et al (2016) estimator as long as the
condition (49) is true.

From (18) and (26), we have
MSEmin (TS) ≤ MSEmin

(
ˆ̄YS(SG)

)
if

[
(A6∆0 + A7∆1 + A8∆2)

∆

]
≥




1 + 1
64

(
1−f

n

)2
C4

x + 1
4

(
1−f

n

)2
C2

y C2
x

(
1 − R2

y.xz

)

1 +
(

1−f
n

)
C2

y

(
1 − R2

y.xz

)


 (50)
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Thus the proposed estimator TS is more efficient than Shabbir and Gupta [12] estimator as long as
the condition (50) holds.

Now from (32) and (26), we have
MSEmin (TS) ≤ MSEmin

(
TS(1)

)
if

[
A6∆0 + A7∆1 + A8∆2

∆

]
≥
[

A6∆∗
0 + A7∆∗

1
∆∗

]
(51)

which is always true.
From (38) and (26), we have
MSEmin (TS) ≤ MSEmin

(
TS(2)

)
, if

[
A6∆0 + A7∆1 + A8∆2

∆

]
≥
[

A6∆∗∗
0 + A8∆∗∗

2
∆∗∗

]
(52)

which always holds.
Thus the proposed class of estimators TS is better than the estimators TS(1) and TS(2) at their optimum

conditions.

5 Numerical Illustrations
For numerical comparisons we considered following four data sets
Data set 1 [Source: Hair [5]]

y : Preceived level of price charged by product suppliers.
x : Overall level of service necessary for maintaining a satisfactory relationship between suppliers and

purchaser.
z : Overall image of manufacturer/suppliers.
N = 100, n = 29, Ȳ = 2.3640, X̄ = 2.9250, Z̄ = 5.2390,
ρyx = 0.1602, ρyz = 0.0829, ρxz = 0.0846, C2

y = 2.5582, C2
x = 0.0661, C2

z = 0.0461.
Data set 2 [Source: Singh [13], pp. 1119-1121]

y : Tobacco yield (metric tons) in specified countries during (1998).
x : Tobacco area (hectares) in specified countries during (1998).
z : Tobacco production (metric tons) in specified countries during (1998).
N = 106, n = 31, Ȳ = 1.5507, X̄ = 34438.61, Z̄ = 52444.56,

ρyx = −0.0077, ρyz = 0.0304, ρxz = 0.9912, C2
y = 0.2629, C2

x = 18.8364, C2
z = 23.3405.

Data set 3 [Source: MFA [2]]
y : District wise tomato production in tones of Pakistan for (2003).
x : District wise tomato production in tones of Pakistan for (2002).
z : District wise tomato production in tones of Pakistan for (2001).
N = 97, n = 30, Ȳ = 3135.6186, X̄ = 3050.2784, Z̄ = 2743.9587,
ρyx = 0.8072, ρyz = 0.8501, ρxz = 0.6122, C2

y = 4.8674, C2
x = 5.4812, C2

z = 6.2422.
Data set 4 [Source: Jhonston [6]]

y : Percentage of living affected by disease.
x : Mean January temperature.
z : Date of flowering of particular summer flowering species (no. of days from January 1).
N = 10, n = 2, Ȳ = 52, X̄ = 42, Z̄ = 200,
ρyx = 0.7966, ρyz = −0.9364, ρxz = −0.7333, C2

y = 0.4997, C2
x = 0.2440, C2

z = 0.0021.
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Table 1 gives the PRE ’s of different estimators considered in this paper with respect to ȳ.
Table 2 to 5 gives the PRE ’s of the proposed class of estimator with respect toȳ at different values

of (α1, α2, δ1, δ2).

Estimator Data 1 Data 2 Data 3 Data 4
ˆ̄YS(R) 102.63 1.37 242.17 266.67

ˆ̄YS(RExp) 101.97 5.27 235.33 176.86
ˆ̄YS(D1) 102.63 100.01 287.00 273.65
ˆ̄YS(RP ) 98.92 24.85 46.53 308.42

ˆ̄YS(RP Exp) 100.45 51.76 74.60 191.43
ˆ̄YS(D2) 103.15 109.00 685.89 1030.83

ˆ̄YS(MSK)(at α = 1) 109.38 404.14 685.99 278.42
ˆ̄YS(MSK)(at α = 0) 109.44 787.52 736.58 778.53

ˆ̄YS(SG) 109.45 297.93 731.30 1085.63

Table 1: PRE ’s of ˆ̄YS(R),
ˆ̄YS(RExp),

ˆ̄YS(D1),
ˆ̄YS(RP ),

ˆ̄YS(RP Exp),
ˆ̄YS(D2), ˆ̄YS(MSK) and ˆ̄YS(SG) with respect to ȳ.

α1 α2 δ1 δ2 PRE
1 1 -1 -1 2188.35
-1 -1 1 1 2359.94
1 1 0 0 8727.61

0.75 0.75 0 0 15563.07
0.25 0.25 1 1 15788.04
0.75 0.75 0.25 0.25 35012.66
0.5 0.5 1 1 35276.14
0.25 0.25 0.75 0.75 35489.64

1 -1 1 -1 111987.2
0.75 0.75 0.5 0.5 140060
0.75 0.75 1 1 140564.9
0.5 0.5 0.25 0.25 140748
0.5 0.5 0.75 0.75 141050.6
0.25 0.25 0 0 141679.5
0.25 0.25 0.5 0.5 141859.8
0.1 0.1 0 0 889758.5
0.09 0.09 0 0 1098841
0.05 0.05 0 0 3565267
0.1 0.1 0.1 0 3946147
0.05 0.05 0.01 0.01 5570472

Table 2: PRE of the proposed estimator TS with respect to ȳ for data set 1

From Tables 1 and 2 to 5 we found that our proposed class of estimators gives the highest PRE
for all the data sets at different values of scalars (α1, α2, δ1, δ2) (5570472, 23098.78, 160144.7 and
9842320 for data sets 1 to 4 respectively) which are higher than the estimators ˆ̄YS(R),

ˆ̄YS(RExp),
ˆ̄YS(D1),

ˆ̄YS(RP ),
ˆ̄YS(RP Exp),

ˆ̄YS(D2), ˆ̄YS(MSK) and ˆ̄YS(SG).

6 Extension to Stratified Random Sampling
Let a population of size N is divided into L strata with the hth stratum consisting of Nh units, such that∑L

h=1 Nh = N, (h = 1, 2, ...N). Let us drawn a sample of size nh by SRSWOR from hth stratum, such

98



Gujarat Journal of Statistics and Data Science Vol. 40, pp. 88–111, 2024

α1 α2 δ1 δ2 PRE
0.06 0.06 0 0 795.81
0.05 0.05 0 0 1076.74
0.05 0.05 0.1 0.1 1081.47
0.2 0.2 0.05 0.1 1122.87
0.1 0.1 0.05 0.05 1511.94
0.1 0.1 0 0.1 1512.19
0.04 0.04 0 0 1588.34
0.05 0.05 0.01 0.01 1682.74
0.03 0.03 0 0 2681.58
0.04 0.04 0.01 0.01 2824.72
0.025 0.025 0 0 3772.71
0.02 0.02 0 0 5770.3
0.03 0.03 0.01 0.01 6036.85
0.1 0.05 0 0 6964.55
0.02 0.02 0.01 0.01 23098.78

Table 3: PRE of the proposed estimator TS with respect to ȳ for data set 2

α1 α2 δ1 δ2 PRE
-1 -1 1 1 759.22
0.1 0.1 1 1 828.79
0.25 0.25 1 1 877.46
0.75 0.75 1 1 2444.84
0.5 0.5 0.25 0.25 3837.87
0.5 0.5 0.75 0.75 4330.34
0.25 0.25 0 0 7851.37
0.25 0.25 0.5 0.5 8026.03
0.1 0 0.1 0.1 49382.6
0.1 0.1 0 0 74815.65
-1 -1 0.1 0.1 91094.72

0.09 0.09 0 0 94968.67
0.025 0.025 0.1 0.1 160144.7

Table 4: PRE of the proposed estimator TS with respect to ȳ for data set 3

that ∑L
h=1 nh = n. For the ith unit in the hth stratum let yhi and (xhi, zhi) be the values of the study

and auxiliary variables respectively.
Let ȳst = ∑L

h=1 Whȳh, x̄st = ∑L
h=1 Whx̄h and z̄st = ∑L

h=1 Whz̄h be the sample means corresponding
to the population means Ȳ = ∑L

h=1 WhȲh, X̄ = ∑L
h=1 WhX̄h and Z̄ = ∑L

h=1 WhZ̄h respectively, where
ȳh = ∑nh

i=1
yhi

nh
, x̄h = ∑nh

i=1
xhi

nh
, z̄h = ∑nh

i=1
zhi

nh
, Ȳh = ∑Nh

i=1
yhi

Nh
, X̄h = ∑Nh

i=1
xhi

Nh
, Z̄h = ∑Nh

i=1
zhi

Nh
, and

Wh = Nh

N
is the known stratum weight.

To obtain the bias and mean squared error (MSE ) of the proposed estimator, we define the following
error terms

e0(st) = (ȳst−Ȳ )
Ȳ

, e1(st) = (x̄st−X̄)
X̄

and e2(st) = (z̄st−Z̄)
Z̄

such that

E
(
e0(st)

)
= E

(
e1(st)

)
= E

(
e2(st)

)
= 0

and

E
(
e2

0(st)

)
=
∑L

h=1 W 2
h

(
1−fh

nh

)
S2

yh

Ȳ 2 , E
(
e2

1(st)

)
=
∑L

h=1 W 2
h

(
1−fh

nh

)
S2

xh

X̄2 , E
(
e2

2(st)

)
=
∑L

h=1 W 2
h

(
1−fh

nh

)
S2

zh

Z̄2 ,

E
(
e0(st)e1(st)

)
=
∑L

h=1 W 2
h

(
1−fh

nh

)
Syxh

Ȳ X̄
, E

(
e0(st)e2(st)

)
=
∑L

h=1 W 2
h

(
1−fh

nh

)
Syzh

Ȳ Z̄
and

E
(
e1(st)e2(st)

)
=
∑L

h=1 W 2
h

(
1−fh

nh

)
Sxzh

X̄ Z̄
.
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α1 α2 δ1 δ2 PRE
-1 1 1 1 1230
1 1 2.5 2.5 109002.9

0.25 0.5 0.25 0.5 200124.8
1 1 0 0 217802.8
1 1 0.05 0.05 246186.3

0.5 0.5 1.25 1.25 371887.4
0.75 0.75 0 0 375909.5
0.25 0.25 1 1 536357.6
0.75 0.75 0.1 0.1 540596.2

1 -1 0 -1 694455.3
1 0 0 1 776344.7

0.5 0.5 0 0 821113.8
0.25 0.25 0.75 0.75 846732.7
0.5 0.5 1 1 959799.5
0.5 0.5 1 1 959799.5
0.25 0.25 1.25 1.25 1088420
0.5 0.5 0.1 0.1 1385435
0.25 0.25 0 0 3188881
0.25 0.25 0.5 0.5 3330473
0.25 0.25 0.1 0.1 9842320

Table 5: PRE of the proposed estimator TS with respect to ȳ for data set 4

where Syxh = ρyxhSyhSxh, Syzh = ρyzhSyhSzh, Sxzh = ρxzhSxhSzh and fh = nh

Nh
is the sampling

fraction.
Also V200 = ∑L

h=1 W 2
h

(
1−fh

nh

)
S2

yh, V020 = ∑L
h=1 W 2

h

(
1−fh

nh

)
S2

xh, V002 = ∑L
h=1 W 2

h

(
1−fh

nh

)
S2

zh,

V110 =
L∑

h=1
W 2

h

(
1 − fh

nh

)
Syxh, V101 =

L∑

h=1
W 2

h

(
1 − fh

nh

)
Syzh, V011 =

L∑

h=1
W 2

h

(
1 − fh

nh

)
Sxzh,

C200 = V200

Ȳ 2 , C020 = V020

X̄2 , C002 = V002

Z̄2 , C110 = V110

Ȳ X̄
, C101 = V101

Ȳ Z̄
, C011 = V011

X̄ Z̄
,

R1 = Ȳ
X̄

and R2 = Ȳ
Z̄

.
Sample mean estimator for population mean Ȳ in stratified random sampling is defined as

ˆ̄YSt(o) = ȳst (53)
The variance/MSE of ȳstis given by

V ar
(

ˆ̄YSt(0)

)
= MSE

(
ˆ̄YSt(0)

)
=

L∑

h=1
W 2

h

(
1 − fh

nh

)
S2

yh. = V200 (54)

Combined ratio-type estimator for Ȳ is given by

ˆ̄Y C
St(R) = ȳst

(
X̄

x̄st

)
, (55)

The MSE of the ratio estimator ˆ̄Y C
St(R) to the first degree of approximation is given by

MSE
(

ˆ̄Y C
St(R)

)
= V200 + R2

1V020 − 2R1V110, (56)

Combined ratio-type exponential estimator is given by

ˆ̄Y C
St(RExp) = ȳst exp

(
X̄ − x̄st

X̄ + x̄st

)
, (57)
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The MSE of ˆ̄Y C
St(RExp) to the first degree of approximation is given by

MSE
(

ˆ̄Y C
St(RExp)

)
= V200 + 1

4R2
1V020 − R1V110. (58)

Difference estimator for single auxiliary variable is defined by

ˆ̄Y C
St(D1) = ȳst + d0(st)

(
X̄ − x̄st

)
, (59)

whered0(st) is constant.
The minimum MSE of the difference estimator ˆ̄Y C

St(D1) at optimum value of d0(st)i.e. d0(st)(opt) = V110
V020

,
is given by

MSEmin

(
ˆ̄Y C

St(D1)

)
∼= V200 − V 2

110
V020

. (60)

Combined ratio cum product type estimator is defined by

ˆ̄Y C
St(RP ) = ȳst

(
X̄

x̄st

) (
z̄st

Z̄

)
(61)

The MSE of ˆ̄Y C
St(RP )to first degree of approximation is given by

MSE
(

ˆ̄Y C
St(RP )

)
=
[
V200 + R2

1V020 + R2
2V002 − 2R1V110 + 2R2V101 − 2R1R2V011

]
(62)

Stratified version of Upadhyaya et. al. [11] exponential ratio cum product type estimator for two
auxiliary variables is given by

ˆ̄Y C
St(RP Exp) = ȳst exp

(
X̄ − x̄st

X̄ + x̄st

)
exp

(
z̄st − Z̄

z̄st + Z̄

)
(63)

The MSE of ˆ̄Y C
St(RP Exp)to the first degree of approximation is given by

MSE
(

ˆ̄Y C
St(RP Exp)

)
=
[
V200 + R2

1
4 V020 + R2

2
4 V002 − R1V110 + R2V101 − R1R2

2 V011

]
(64)

Combined traditional difference estimator for two auxiliary variables is defined by

ˆ̄Y C
St(D2) =

{
ȳst + d1(st)

(
X̄ − x̄st

)
+ d2(st)

(
Z̄ − z̄st

)}
, (65)

whered1(st)and d2(st) are constants whose values are to be determined.
Minimum MSE of ˆ̄Y C

St(D2)at optimum values of d1(st)and d2(st) i.e d1(st)(opt) = (V002V110−V011V101)
(V020V002−V 2

011) and

d2(st)(opt) = (V020V101−V011V110)
(V020V002−V 2

011) , is given by

MSEmin

(
ˆ̄Y C

St(D2)

)
∼=
[
V200 − (V 2

110V002 − 2V011V101V110 + V020V
2

101)
(V020V002 − V 2

011)

]
, (66)

Motivated by Gupta and Shabbir [4] and Singh and Singh [14], Muneer et. al. [8] proposed the
following general class of estimators in stratified random sampling scheme as

ˆ̄Y C
St(MSK) =

[
k3stȳst − k4st

(
x̄st − X̄

)] [
α

{
2 − exp

(
z̄st − Z̄

z̄st + Z̄

)
+ (1 − α) exp

(
Z̄ − z̄st

Z̄ + z̄st

)}]
(67)
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where (ki, i = 3, 4) are unknown constants whose values are to be determined.
The minimum MSE of ˆ̄Y C

St(MSK)at the optimum values of k3 and k4 to the first degree of approximation
is given by

MSEmin

(
ˆ̄Y C

St(MSK)

)
= Ȳ 2

[
1 − C2

011
4C020

− A2
st

Bst

]
(68)

where

Ast = 1 +
(3

8 − α

4

)
C002 − 1

2C101 − C011 (C011 − C110)
2C020

and

Bst = 1 + C200 +
(

1 − α

2

)
C002 − 2C101 − (C011 − C110)2

C020
.

Motivated by Shabbir and Gupta [12], we define a class of combined difference estimator for population
mean Ȳ as

ˆ̄Y C
St(SG) =

{
d1ȳst + d2

(
X̄ − x̄st

)
+ d3

(
Z̄ − z̄st

)}
exp

(
X̄ − x̄st

X̄ + x̄st

)
, (69)

where di (i = 1, 2, 3) are suitably chosen constants.
To the first degree of approximation, the bias and mean squared error of ˆ̄Y C

St(SG) are respectively given
by

B
(

ˆ̄Y C
St(SG)

)
= Ȳ [a7d1 + a8d2 + a9d3 − 1] , (70)

and

MSE
(

ˆ̄Y C
St(SG)

)
= Ȳ 2

[
1 + a1d

2
1 + a2d

2
2 + a3d

2
3 + 2a4d1d2 + 2a5d1d3 + 2a6d2d3

−2a7d1 − 2a8d2 − 2a9d3

]
. (71)

where

a1 = (1 + C200 + C020 − 2C110) ,

a2 = 1
R2

1
C020 , a3 = 1

R2
2
C002 ,

a4 = 1
R1

(C020 − C110) ,

a5 = 1
R2

(C011 − C101) ,

a6 = 1
R1R2

C011

a7 =
(
1 − 1

2C110 + 3
8C020

)
,

a8 = C020

2R1
, a9 = C011

2R2
.

Minimum MSE of ˆ̄Y C
St(SG) at optimum values of di (i = 1, 2, 3) is given by

MSEmin

(
ˆ̄Y C

St(SG)

)
= Ȳ 2

[
1 −

(
a7∆01(st) + a8∆02(st) + a9∆03(st)

∆00(st)

)]
(72)

where
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∆00(st) = a1 [a2a3 − a2
6] − a4 [a3a4 − a5a6] + a5 [a4a6 − a2a5] ,

∆01(st) = a7 [a2a3 − a2
6] − a4 [a3a8 − a6a9] + a5 [a6a8 − a2a9] ,

∆02(st) = a1 [a3a9 − a6a9] − a7 [a3a4 − a5a6] + a5 [a4a9 − a5a9] ,

∆03(st) = a1 [a3a9 − a6a8] − a4 [a4a9 − a5a8] + a7 [a4a6 − a2a5] .

and d1(opt) = ∆01(st)
∆00(st)

, d2(opt) = ∆02(st)
∆00(st)

, d3(opt) = ∆03(st)
∆00(st)

.

7 Suggested Class of Estimators in Stratified Random Sampling
The proposed class of estimators TS at 2.1 in simple random sampling without replacement (SRSWOR)
can be also studied in stratified random sampling. In practice the use of combined class of estimators and
separate class of estimators for population mean Ȳ can be made. However, Cochran [1] suggested that
with only a small sample in each stratum, the combined estimate is to be recommended. Also for ease
of computation, we use the combined estimator in our proposed setup. The suggested combined class of
estimators in stratified random sampling is defined by

T C
St =

{
w0ȳst + w1

(
x̄st

X̄

)α1

+ w2

(
z̄st

Z̄

)α2}
exp





δ1
(
X̄ − x̄st

)

X̄ + x̄st



 exp





δ2
(
Z̄ − z̄st

)

Z̄ + z̄st



 , (73)

where (w0, w1, w2) are suitably chosen weights and (α1, α2, δ1, δ2) are design parameters.
Expanding (73) by using error terms, we have

T C
St =

[
w0Ȳ

(
1 + e0(st)

)
+ w1

(
1 + e1(st)

)α1 + w2
(
1 + e2(st)

)α2] exp
{

−δ1e1(st)

2 + e1(st)

}
exp

{
−δ2e2(st)

2 + e2(st)

}

(74)
Expanding RHS of (74), multiplying and omitting the terms of e’s having power greater than two, we

have

T C
St =




w0Ȳ





1 + e0(st) −
(

δ1e1(st)+δ2e2(st)
2

)
−
(

δ1e0(st)e1(st)+δ2e0(st)e2(st)
2

)

+ δ1(δ1+2)
8 e2

1(st) + δ1δ2
4 e1(st)e2(st) + δ2(δ2+2)

8 e2
2(st)





+w1
{
1 + θ1e1(st) − δ2

2 e2(st) + θ1(θ1−1)
8 e2

1(st) − δ2θ1
2 e1(st)e2(st) + δ2(δ2+2)

8 e2
2(st)

}

+w2
{
1 + θ2e2(st) − δ1

2 e1(st) + δ1(δ1+2)
8 e2

1(st) − δ1θ2
2 e1(st)e2(st) + θ2(θ2−1)

8 e2
2(st)

}




or

(
T C

St − Ȳ
)

=




w0Ȳ





1 + e0(st) −
(

δ1e1(st)+δ2e2(st)
2

)
−
(

δ1e0(st)e1(st)+δ2e0(st)e2(st)
2

)

+ δ1(δ1+2)
8 e2

1(st) + δ1δ2
4 e1(st)e2(st) + δ2(δ2+2)

8 e2
2(st)





+w1
{
1 + θ1e1(st) − δ2

2 e2(st) + θ1(θ1−1)
8 e2

1(st) − δ2θ1
2 e1(st)e2(st) + δ2(δ2+2)

8 e2
2(st)

}

+w2
{
1 + θ2e2(st) − δ1

2 e1(st) + δ1(δ1+2)
8 e2

1(st) − δ1θ2
2 e1(st)e2(st) + θ2(θ2−1)

8 e2
2(st)

}

−Ȳ




(75)

where θ1 = (2α1−δ1)
2 and θ2 = (2α2−δ2)

2 .
On taking expectation on both sides of (75), we get the bias of the proposed estimator T C

St upto first
order of approximation as
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B
(
T C

St

)
= Ȳ

[
w0A6(st) + w1A7(st) + w2A8(st) − 1

]
, (76)

where

A6(st) =
[
1 + δ1 (δ1 + 2)

8 C020 + δ1δ2

4 C011 + δ2 (δ2 + 2)
8 C002 − 1

2 (δ1C110 + δ2C101)
]

,

A7(st) = 1
R1X̄

[
1 + θ1 (θ1 − 1)

2 C020 − δ2θ1

2 C011 + δ2 (δ2 + 2)
8 C002

]
,

A8(st) = 1
R2Z̄

[
1 + δ1 (δ1 + 2)

8 C020 − δ1θ2

2 C011 + θ2 (θ2 − 1)
2 C002

]
.

On squaring both sides of (75), omitting terms of e’s having power greater than two and then taking
expectation on both sides we get the MSE of the proposed estimator T C

Stto the first degree of approximation
as

MSE
(
T C

St

)
= Ȳ 2

[
1 + w2

0A0(st) + w2
1A1(st) + w2

2A2(st) + 2w0w1A3(st) + 2w0w2A4(st) + 2w1w2A5(st)
−2w0A6(st) − 2w1A7(st) − 2w2A8(st)

]

(77)
where

A0(st) =
[
1 + C200 + δ1(δ1+1)

2 C020 + δ1δ2C011 + δ2(δ2+1)
2 C002 − 2 (δ1C110 + δ2C101)

]
,

A1(st) = 1
R2

1X̄2

[
1 + θ1 (2θ1 − 1) C020 − 2θ1δ2C011 + δ2(δ2+1)

2 C002
]

,

A2(st) = 1
R2

2Z̄2

[
1 + δ1(δ1+1)

2 C020 − 2δ1θ2C011 + θ2 (2θ2 − 1) C002
]

,

A3(st) = 1
R1X̄

[
1 + (α1 − δ1) C110 − δ2C101 + (α1−δ1)(α1−δ1−1)

2 C020 − δ2 (α1 − δ1) C011 + δ2(δ2+1)
2 C002

]
,

A4(st) = 1
R2Z̄

[
1 + (α2 − δ2) C101 + δ1(δ1+1)

2 C020 − δ1 (α2 − δ2) C011 + (α2−δ2)(α2−δ2−1)
2 C002

]
,

A5(st) = 1
R1R2X̄Z̄

[
1 + (α1−δ1)(α1−δ1−1)

2 C020 + (α2−δ2)(α2−δ2−1)
2 C002 + (α1 − δ1) (α2 − δ2) C011

]
,

A6(st), A7(st) and A8(st) are same as defined earlier.
To find the optimum values of(w0, w1, w2 ), minimizing MSE

(
T C

St

)
at (77) with respect

to(w0, w1, w2 ), which yields



A0(st) A3(st) A4(st)
A3(st) A1(st) A5(st)
A4 (st) A5(st) A2(st)







w0
w1
w2


 =




A6(st)
A7(st)
A8(st)


 (78)

and after simplifying (78), the optimum values are

w0(opt) = ∆0(st)
∆(st)

,

w1(opt) = ∆1(st)
∆(st)

,

w2(opt) = ∆2(st)
∆(st)

.





(79)

where
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∆(st) =

∣∣∣∣∣∣∣

A0(st) A3(st) A4(st)
A3(st) A1(st) A5(st)
A4(st) A5(st) A2(st)

∣∣∣∣∣∣∣

= A0(st)
(
A1(st)A2(st) − A2

5(st)

)
− A3(st)

(
A2(st)A3(st) − A4(st)A5(st)

)

+A4(st)
(
A3(st)A5(st) − A1(st)A4(st)

)

∆0(st) =

∣∣∣∣∣∣∣

A6(st) A3(st) A4(st)
A7(st) A1(st) A5(st)
A8(st) A5(st) A2(st)

∣∣∣∣∣∣∣

= A6(st)
(
A1(st)A2(st) − A2

5(st)

)
− A3(st)

(
A2(st)A7(st) − A5(st)A8(st)

)

+A4(st)
(
A5(st)A7(st) − A1(st)A8(st)

)
,

∆1(st) =

∣∣∣∣∣∣∣

A0(st) A6(st) A4(st)
A3(st) A7(st) A5(st)
A4(st) A8(st) A2(st)

∣∣∣∣∣∣∣

= A0(st)
(
A2(st)A7(st) − A5(st)A8(st)

)
− A6(st)

(
A2(st)A3(st) − A4(st)A5(st)

)

+A4(st)
(
A3(st)A8(st) − A4(st)A7(st)

)
,

∆2(st) =

∣∣∣∣∣∣∣

A0(st) A3(st) A6(st)
A3(st) A1(st) A7(st)
A4(st) A5(st) A8(st)

∣∣∣∣∣∣∣

= A0(st)
(
A1(st)A8(st) − A5(st)A7(st)

)
− A3(st)

(
A3(st)A8(st) − A4(st)A7(st)

)

+A6(st)
(
A3(st)A5(st) − A1(st)A4(st)

)
.

Thus the resulting minimum MSE of T C
St is given by

MSEmin
(
T C

St

)
= Ȳ 2


1 −

(
A6(st)∆0(st) + A7(st)∆1(st) + A8(st)∆2(st)

)

∆(st)


 . (80)

8 Special Cases
For w2 = 0, the proposed class of combined estimators reduces to:

T C
St(1) =

[
w0ȳst + w1

(
x̄st

X̄

)α1]
exp





δ1
(
X̄ − x̄st

)

X̄ + x̄st



 exp





δ2
(
Z̄ − z̄st

)

Z̄ + z̄st



 (81)
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Bias and MSE of T C
St(1)are respectively given as

B
(
T C

St(1)

)
= Ȳ

[
w0A6(st) + w1A7(st) − 1

]
, (82)

and

MSE
(
T C

St(1)

)
= Ȳ 2

[
1 + w2

0A0(st) + w2
1A1(st) + 2w0w1A3(st) − 2w0A6(st) − 2w1A7(st)

]
. (83)

Minimizing (83) with respect to (w0, w1) yields,
[

A0(st) A3(st)
A3(st) A1(st)

] [
w0
w1

]
=
[

A6(st)
A7(st)

]
(84)

After simplifying (84), we obtain the optimum values of (w0, w1) as

w∗
0 = ∆∗

0(st)
∆∗

(st)
,

w∗
1 = ∆∗

1(st)
∆∗

(st)
.





(85)

Thus the resulting minimum MSE of T C
St(1) is

MSEmin
(
T C

St(1)

)
= Ȳ 2


1 −

(
A6(st)∆∗

0(st) + A7(st)∆∗
1(st)

)

∆∗
(st)


 . (86)

where

∆∗
(st) =

∣∣∣∣∣
A0(st) A3(st)
A3(st) A1(st)

∣∣∣∣∣ =
(
A0(st)A1(st) − A2

3(st)

)

∆∗
0(st) =

∣∣∣∣∣
A6(st) A3(st)
A7(st) A1(st)

∣∣∣∣∣ =
(
A1(st)A6(st) − A3(st)A7(st)

)

∆∗
1(st) =

∣∣∣∣∣
A0(st) A6(st)
A3(st) A7(st)

∣∣∣∣∣ =
(
A0(st)A7(st) − A3(st)A6(st)

)
.

For w1 = 0, the proposed class of estimators reduces to:

T C
St(2) =

[
w0ȳst + w2

(
z̄st

Z̄

)α2]
exp





δ1
(
X̄ − x̄st

)

X̄ + x̄st



 exp





δ2
(
Z̄ − z̄st

)

Z̄ + z̄st



 (87)

Bias and MSE of T C
St(2)are respectively given as

B
(
T C

St(2)

)
= Ȳ

[
w0A6(st) + w2A8(st) − 1

]
, (88)

and

MSE
(
T C

St(2)

)
= Ȳ 2

[
1 + w2

0A0(st) + w2
2A2(st) + 2w0w2A4(st) − 2w0A6(st) − 2w2A8(st)

]
. (89)

Minimizing (89) with respect to (w0, w2) yields,
[

A0(st) A4(st)
A4(st) A2(st)

] [
w0
w2

]
=
[

A6(st)
A8(st)

]
(90)
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After simplifying (90), we obtain the optimum values of (w0, w2) as

w∗∗
0 = ∆∗∗

0(st)
∆∗∗

(st)
,

w∗∗
2 = ∆∗∗

2(st)
∆∗∗

(st)
.





(91)

Thus the resulting minimum MSE of T C
St(2) is

MSEmin
(
T C

St(2)

)
= Ȳ 2


1 −

(
A6(st)∆∗∗

0(st) + A8(st)∆∗∗
2(st)

)

∆∗∗
(st)


 . (92)

where
∆∗∗

(st) =
∣∣∣∣∣

A0(st) A4(st)
A4(st) A2(st)

∣∣∣∣∣ =
(
A0(st)A2(st) − A2

4(st)

)
,

∆∗∗
0(st) =

∣∣∣∣∣
A6(st) A4(st)
A8(st) A2(st)

∣∣∣∣∣ =
(
A6(st)A2(st) − A4(st)A8(st)

)
,

∆∗∗
2(st) =

∣∣∣∣∣
A0(st) A6(st)
A4(st) A8(st)

∣∣∣∣∣ =
(
A0(st)A8(st) − A4(st)A6(st)

)
.

9 Efficiency Comparison
From (54), (56), (58) and (60) respectively, we have

MSE
(

ˆ̄YSt(0)

)
− MSEmin

(
ˆ̄Y C

St(D1)

)
= V 2

110
V020

≥ 0. (93)

MSE
(

ˆ̄Y C
St(R)

)
− MSEmin

(
ˆ̄Y C

St(D1)

)
=
[
R1V020 (R1V020 − 2V110) + V 2

110

]
≥ 0. (94)

MSE
(

ˆ̄Y C
St(RExp)

)
− MSEmin

(
ˆ̄Y C

St(D1)

)
=
[
R1V020

(1
4R1V020 − V110

)
+ V 2

110

]
≥ 0. (95)

It follows from (93), (94), and (95) that the combined difference estimator for single auxiliary variable
is more efficient than ˆ̄YSt(0), ˆ̄Y C

St(R) and ˆ̄Y C
St(R).

From (62) and (66), we have

MSE
(

ˆ̄Y C
St(RP )

)
− MSEmin

(
ˆ̄Y C

St(D2)

)
=
[

(V020V002 − V 2
011) (V020 + V002 − 2V110 + 2V101 − 2V011)

+ (V 2
200V002 − 2V011V101V110 + V020V

2
101)

]

≥ 0. (96)

Thus from (96), the difference estimator for two auxiliary variable is more efficient than ˆ̄Y C
St(RP ).

From (64) and (66), we have

MSE
(

ˆ̄Y C
St(RP Exp)

)
− MSEmin

(
ˆ̄Y C

St(D2)

)

=
(
V020V002 − V 2

011

)(R2
1

4 V020 + R2
2

4 V002 − R1V110 + R2V101 − R1R2

2 V011

)

+
(
V 2

200V002 − 2V011V101V110 + V020V
2

101

)

≥ 0. (97)
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Thus from (97), the difference estimator for two auxiliary variable is more efficient than ˆ̄Y C
St(RP Exp).

From (60) and (66), we have

MSEmin

(
ˆ̄Y C

St(D1)

)
− MSEmin

(
ˆ̄Y C

St(D2)

)

=
[
V020

(
V 2

200V002 − 2V011V101V110 + V020V
2

101

)
− V 2

110

(
V020V002 − V 2

011

)]

≥ 0 (98)

From (93), (94), (95) and (98), we have the following inequalities:

MSEmin

(
ˆ̄Y C

St(D2)

)
≤ MSEmin

(
ˆ̄Y C

St(D1)

)
≤ MSE

(
ˆ̄YSt(0)

)
(99)

MSEmin

(
ˆ̄Y C

St(D2)

)
≤ MSEmin

(
ˆ̄Y C

St(D1)

)
≤ MSE

(
ˆ̄Y C

St(R)

)
(100)

MSEmin

(
ˆ̄Y C

St(D2)

)
≤ MSEmin

(
ˆ̄Y C

St(D1)

)
≤ MSE

(
ˆ̄Y C

St(RExp)

)
(101)

Hence ˆ̄Y C
St(D2)is more efficient than the sample mean, ratio-type, ratio-type exponential and difference

estimator for single auxiliary variable.
From (66) and (80), we have that
MSEmin

(
T C

St

)
≤ MSEmin

(
ˆ̄Y C

St(D2)

)
, if

[
(V020V002 − V 2

011)
∆(st)

{
V200∆(st) + Ȳ 2

(
A6(st)∆0(st) + A7(st)∆1(st)
+A8(st)∆2(st)

)}]

≥
[

Ȳ 2 (V020V002 − V 2
011)

+ (V 2
200V002 − 2V011V101V110 + V020V

2
101)

]
(102)

Thus the proposed estimator T C
Stis more efficient than the difference estimator for two auxiliary variables

as long as the condition (102) holds.
Further from (96) to (101), we can see that our proposed class of estimators T C

Stis also more efficient
than the stratified(combined) sample mean, ratio-type, ratio-type exponential, difference estimator for
single auxiliary variable, ratio cum product-type estimator and ratio cum product-type exponential
estimators.

From (68) and (80), we have
MSEmin

(
T C

St

)
≤ MSEmin

(
ˆ̄Y C

St(MSK)

)
, if




(
A6(st)∆0(st) + A7(st)∆1(st) + A8(st)∆2(st)

)

∆(st)


 ≥

[
Ȳ 2

(
C2

011
4C020

+ A2
st

Bst

)]
(103)

Thus the proposed estimator T C
Stis more efficient than Muneer et al (2016) estimator as long as the

condition (49) holds.
From (72) and (80), we have
MSEmin

(
T C

St

)
≤ MSEmin

(
ˆ̄Y C

St(SG)

)
, if
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


(
A6(st)∆0(st) + A7(st)∆1(st) + A8(st)∆2(st)

)

∆(st)


 ≥




(
a7∆01(st) + a8∆02(st) + a9∆03(st)

)

∆00(st)


 (104)

Thus the proposed estimator T C
Stis more efficient than Shabbir and Gupta [12] estimator as long as

the condition (104) is true.
Now from (86) and (80), we have MSEmin

(
T C

St

)
≤ MSEmin

(
T C

St(1)

)
, if

[
A6(st)∆0(st) + A7(st)∆1(st) + A8(st)∆2(st)

∆(st)

]
≥

A6(st)∆∗

0(st) + A7(st)∆∗
1(st)

∆∗
(st)


 (105)

which is always true.
From (92) and (80), we have
MSEmin

(
T C

St

)
≤ MSEmin

(
T C

St(2)

)
, if

[
A6(st)∆0(st) + A7(st)∆1(st) + A8(st)∆2(st)

∆(st)

]
≥

A6(st)∆∗∗

0(st) + A8(st)∆∗∗
2(st)

∆∗∗
(st)


 (106)

which always holds.
Thus the proposed class of estimators T C

Stis better than the estimators T C
St(??)and T C

St(??)at their
optimum conditions.

10 Numerical Illustration
For numerical illustration we use the following data sets
Data set 1 [Source: Tailor and Chouhan [10]]

y : Productivity (MT/hectare).
x : Production (000 tons).
z : Area (000 hectare).
N = 20, n = 8, N1 = 10, N2 = 10, n1 = 4, n2 = 4
Ȳ1 = 1.70, Ȳ2 = 3.67, X̄1 = 10.40, X̄2 = 289.14, Z̄1 = 6.23, Z̄2 = 80.67,

Sy1 = 0.50, Sy2 = 1.41, Sx1 = 3.53, Sx2 = 111.61, Sz1 = 1.18, Sz2 = 10.81,

Syx1 = 1.60, Syx2 = 144.88, Sxz1 = 1.38, Sxz2 = −92.02, Syz1 = −0.05, Syz2 = −7.04.

Data set 2 [Source: National Horticulture Board [9]]
y : Productivity (MT/hectare).
x : Production (000 tons).
z : Area (000 hectare).
N = 10, n = 7, N1 = 5, N2 = 5, n1 = 3, n2 = 4,

Ȳ1 = 1.70, Ȳ2 = 3.67, X̄1 = 10.41, X̄2 = 309.14, Z̄1 = 6.20, Z̄2 = 80.67,

S2
y1 = 0.2916, S2

y2 = 1.9881, S2
x1 = 1.4116, S2

x2 = 3486.6916,

S2
z1 = 1.4116, S2

z2 = 116.8561, Syx1 = 1.6000, Syx2 = 83.47,

Sxz1 = 1.7500, Sxz2 = 64.9700, Syz1 = −0.2000, Syz2 = 5.5800.

Table 6 gives the PRE ’s of different estimators considered in this paper with respect to ȳst.
Table 7 gives the PRE ’s of the proposed class of estimator with respect to ȳst at different values of

(α1, α2, δ1, δ2).
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Estimator Data 1 Data 2
ˆ̄Y C

St(R) 225.25 344.59
ˆ̄Y C

St(RExp) 364.53 179.86
ˆ̄Y C

St(D1) 432.60 493.58
ˆ̄Y C

St(RP ) 290.76 158.69
ˆ̄Y C

St(RP Exp) 660.33 143.39
ˆ̄Y C

St(D2) 1072.78 589.44
ˆ̄Y C

St(MSK) (at α = 1) 223.82 587.95
ˆ̄Y C

St(MSK) (at α = 0) 223.91 588.01
ˆ̄Y C

St(SG) 1048.10 587.94

Table 6: PRE ’s of ˆ̄Y C
St(R),

ˆ̄Y C
St(RExp),

ˆ̄Y C
St(D1),

ˆ̄Y C
St(RP ),

ˆ̄Y C
St(RP Exp),

ˆ̄Y C
St(D2),

ˆ̄Y C
St(MSK)and ˆ̄Y C

St(SG)with respect toȳ.

For Data Set 1 For Data Set 2
α1 α2 δ1 δ2 PRE α1 α2 δ1 δ2 PRE
1 1 0 0 1290.19 0.25 0.25 1 1 1407.53
1 1 0.25 0.25 2293.67 1 1 0 0 2111.01

0.75 0.75 0 0 2835.84 0.75 0.75 0 0 2733.85
1 0 1 1 2901.33 1 1 0.25 0.25 3759.05

0.25 0.25 1 1 4315.93 0.5 0.5 1 1 4389.42
1 1 0 1 5160.44 0.5 0.5 0 0 4392.65
1 1 1 0 5160.93 1 0 1 1 5009.18
1 1 0.5 0.5 5161.02 0 0.5 0.5 0.5 7872.07

0.5 0.5 0 0 7896.38 1 1 0 1 8444.21
0.5 0.5 1 1 7899.81 1 1 0.5 0.5 8518.06
0.5 0 0.5 0.5 11603.2 1 1 1 0 8548.12
1 1 0.75 0.75 20652.9 0.25 0.25 0.5 0.5 12667.3
0 0.5 0.5 0.5 24742.4 0.25 0.25 0 0 12673.3

0.75 0.75 1 1 25548.2 0.5 0.5 0 0.5 17567.2
0.5 0.5 0.25 0.25 31583.9 0.5 0.5 0.25 0.25 17608.1
0.5 0.5 0.5 0 31584.1 0.5 0.5 0.5 0 17620.5
0.5 0.5 0 0.5 31585.9 0.5 0 0.5 0.5 19792.4
0.25 0.25 0 0 38835 0.75 0.75 1 1 24945.4
0.25 0.25 0.5 0.5 38844.8 1 1 0.75 0.75 35688.9
0.25 0 0.25 0.25 46409.7 0.25 0.25 0 0.25 50687.3
0.25 0.25 0.25 0 155330 0.25 0.25 0.25 0 50728
0.25 0.25 0 0.25 155339 0.25 0 0.25 0.25 79119.9

Table 7: PRE of the proposed estimator T C
St with respect to ȳ
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From the Tables 6 and 7 we found that our proposed class of estimators gives the highest PRE for
all the data sets at different values of scalars (α1, α2, δ1, δ2)(155339.2, 79119.91 for data sets 1 and 2
respectively) which are higher than the estimators ˆ̄Y C

St(R) , ˆ̄Y C
St(RExp) , ˆ̄Y C

St(D1) , ˆ̄Y C
St(RP ) , ˆ̄Y C

St(RP Exp) , ˆ̄Y C
St(D2),

ˆ̄Y C
St(MSK) and ˆ̄Y C

St(SG).

11 Conclusion
In this paper we have suggested a class of estimators for population mean based on two auxiliary variables
in simple random sampling as well as in stratified random sampling. We studied their properties up
to the first order of approximation and also find the optimum conditions in which our proposed class of
estimators is better than other existing estimators in both the sampling schemes. For numerical illustration,
we consider data sets (4 in simple random sampling and 2 in stratified random sampling) and found that
our developed class of estimators has the highest PRE s as compared to other estimators. Hence we
recommend our recommend their use in practice.
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