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CHARACTERIZATION OF PROBABILITY MEASURES BASED ON

Q-INDEPENDENT GENERALIZED RANDOM FIELDS

B.L.S. Prakasa Rao1

CR Rao Advanced Institute of Mathematics, Statistics and 
Computer Science, Hyderabad 500046, India

Abstract: Prakasa Rao (Studia Sci. Math. Hungar., 11 (1976) 277-282) studied a charac-

terization of probability distributions for linear functions of independent generalized random

fields. These results are extended to Q-independent generalized random fields. It is known

that independence of random variables implies Q-independence of them but the converse is

not true.

Key words : Generalized random field; Characteristic functional; Q-independence; Gaus-

sian characteristic functional.

MSC2020: Primary 60G60.

1 Introduction

Rao (1971) obtained some characterizations of probability distributions on the real line

through linear functions of independent real-valued random variables. Some of these results

were extended to linear functions of independent generalized random fields in Prakasa Rao

(1976). Kagan and Szekely (2016) introduced the concept of Q-independence for real-valued

random variables. A characterization of probability distributions for Q-independent random

elements was presented in a collection of articles in Prakasa Rao (2016, 2017, 2018a,b,c)

and for Q-independent random variables taking values in a locally compact Abelian group

by Feldman (2017). We now extend the results in Prakasa Rao (1976) to Q-independent

generalized random fields. It is known that independence of random variables implies their

Q-independence but the converse is not true.

1E-mail address: blsprao@gmail.com
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2 Preliminaries

Let X be the space of all real-valued functions φ(x) = φ(x1, . . . , xn) of n variables which are

infinitely differentiable and have bounded supports. A sequence of functions {φm,m ≥ 1} in

X is said to converge to zero if there exists a constant a such that φm vanishes for ||x|| ≥ a,
and if , for every integer q ≥ 1, the sequence {φ(q)

m ,m ≥ 1} converges uniformly to zero where

||x|| = (x2
1 + . . . + x2

n)1/2 and φ(q) denotes the q-th derivative of φ.Any continuous linear

functional on X is called a generalized function.

A functional Φ defined on X is said to be a random functional if for every φ ∈ X there is

associated a real-valued random variable Φ(φ). In other words, for every set of m elements

φi, 1 ≤ i ≤ m in X , one can specify the probability that

ai ≤ Φ(φi) ≤ bi, 1 ≤ i ≤ m

for −∞ < ai < bi < ∞, 1 ≤ i ≤ m and these probability distributions are consistent. The

random fuctional Φ is said to be linear if for any two elements φ, ψ ∈ X , and for any two real

numbers α, β,

Φ(αφ+ βψ) = αΦ(φ) + βΦ(ψ)

almost surely. A random functional Φ is said to be continuous if the convergence of the

functions φkj to φj , 1 ≤ j ≤ m as k → ∞ in X implies that for every bounded continuous

function f(x1, . . . , xm),

lim
k→∞

∫

Rm
f(x1, . . . , xm)Pk(dx) =

∫

Rm
f(x1, . . . , xm)P (dx)

where P is the probability measure corresponding to the random vector (Φ(φ1), . . . ,Φ(φm))

and Pk is the probability measure corresponding to the random vector (Φ(φk1), . . . ,Φ(φkm)).

Any continuous linear random functional on X is called a generalized random function. If

the space X consists of functions of one variable, then the corresponding random functional is

called a generalized random process. If the space X consists of functions of several variables,

then the corresponding random functional is called a generalized random field.

Let Φ and Ψ be two generalized random fields on X . The generalized random fields Φ and

Ψ are said to be independent if the set of random variables {Φ(φ), φ ∈ X} is independent of

the set of random variables {Ψ(φ), φ ∈ X}. This notion can be extended to any finite number

of generalized random fields in an obvious manner.
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Let Φ be a generalized random field. The functional

L(φ) = E[eiΦ(φ)], φ ∈ X

is called the characteristic functional of the generalized random field Φ. It can be shown that

L(0) = 1, L(−φ) = L(φ̄), L(φ) is continuous in φ and positive definite. Conversely, if L(.) is

a positive-definite continuous functional on X such that L(0) = 1, it can be shown that there

exists a generalized random field Φ on X whose characteristic functional is L(.). Furthermore

the correspondence between the characteristic functionals L(.) and the generalized random

fields Φ on X is one to one.

Let Φ1, . . . ,Φk be generalized random fields on the space X . The joint characteristic

functional of the k-dimensional generalized random field (Φ1, . . . ,Φk) is defined by

LΦ1,...,Φk
(φ1, . . . , φk) = E[exp{iΦ1(φ1) + . . .+ iΦk(φk)}], φj , 1 ≤ j ≤ k ∈ X .

If the generalized random fields are independent, then it can be shown that

LΦ1,...,Φk
(φ1, . . . , φk) = L1(φ1) . . . Lk(φk)

where Lj(.) is the characteristic functional of Φj for 1 ≤ j ≤ k.

A generalized random field Φ on X is said to be Gaussian if its characteristic functional

is of the form

L(φ) = exp(i m(φ)− 1

2
B(φ, φ)), φ ∈ X

where m(.) is a generalized function and B(φ, ψ) = E[Φ(φ)Φ(ψ)], φ, ψ ∈ X . It is said to be

degenerate if its characteristic functional is of the form

L(φ) = exp(i m(φ)), φ ∈ X

where m(.) is a generalized function.

We refer the reader to Gelfand and Vilenkin (1964) for more details on generalized random

fields and generalized random processes.

Denote by ∆h the finite difference operator

∆hf(φ) = f(φ+ h)− f(h).
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a function f(φ) defined on X is called a polynomial if

∆n+1
h f(φ) = 0

for some integer n ≥ 1 and for all φ, h ∈ X . The minimal integer n for which this equality

holds is called the degree of the polynomial f(.) defined on X .

Let Φi, 1 ≤ i ≤ k be generalized random fields on X . Let βi, 1 ≤ i ≤ k be nonzero real

numbers. We define the process β1Φ1 + . . .+βkΦk to be the process for which to every φ ∈ X
corresponds the random variable Φ1(β1φ) + . . .+ Φk(βkφ).

Let Φ1, . . . ,Φk be generalized random fields. We say that they are Q-independent if their

joint characteristic functional can be represented in the form

LΦ1,...,Φk
(φ1, . . . , φk) = Πk

i=1LΦi(φi) exp(q(φ1, . . . , φk)), φ1, 1 ≤ i ≤ k ∈ X(2. 1)

where q(φ1, . . . , φk) is a continuous polynomial on the space X k and q(0, . . . , 0) = 0.

Suppose that Φi, i = 1, 2, 3 are independent Gaussian random fields. Then it is obvious

that η1 = Φ1 + Φ2 and η2 = Φ1 + Φ3 are not independent random fields. However they

are Q-independent. This can be seen by computing the joint characteristic functional of the

bivariate generalized random field (η1, η2) and the characteristic functionals of the generalized

random fields η1 and η2.

The following result is a consequence of the Marcinkeiwicz theorem (cf. Marcinkiewicz

(1938)) for real-valued random variables.

Theorem 2.1: Let f(y) be the characteristic functional of a generalized random field Φ on

X . If

f(y) = exp[P (y)], y ∈ X ,

where P (y) is a continuous polynomial in y ∈ X , then P (y) is a polynomial of degree less

than or equal to 2 and f(y) is the characteristic functional of a Gaussian random field which

could be degenerate.

Proof : By the definition of the characteristic functional of the generalized random field Φ

on X , it follows that

E[exp(iΦ(y))] = exp[P (y)], y ∈ X .
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Hence

E[exp(itΦ(y))] = E[exp(iΦ(ty))] = exp[P (ty)]

for any real t ∈ R. Since the function on the left side of the above equation is the characteristic

function of the real valued random variable Φ(y) it follows that the function on the right

side of the equation has to be a polynomial of degree less than or equal to 2 in ty by the

classical Marcinkeiwicz theorem. Choosing t = 1, it follows that P (y) is a polynomial of

degree less than or equal to 2 in y which in turn implies that the generalized random field is

either degenerate or is Gaussian.

We now prove a theorem dealing with functional equations on the space X which is of

independent interest. Proof of the theorem is similar to that when the space X is the set

of real numbers (cf. Kagan et al. (1973)). Our presentation is similar to that in Feldman

(2017) when the space X is a locally compact Abelian group. We present the detailed proof

for completeness.

Theorem 2.2 : Let X be the space of infinitely differentiable functions. Consider the

functional equation

n∑

j=1

ψj(u+ bjv) = P (u) +Q(v) +R(u, v), u, v ∈ X(2. 2)

where b1, . . . , bn are nonzero real numbers with bi 6= bj , 1 ≤ j ≤ n and ψj(u), 1 ≤ j ≤
n, P (u), Q(v) are functions on X and R(u, v) is a polynomial on X × X . Then P (u) is a

polynomial on X .

Proof: We use the finite difference method for proving the theorem. Let h1 be an arbitrary

element of X . Define k1 = −b−1
n h1. Then h1 + bnk1 = 0. Substitute u + h1 for u and v + k1

for v in the equation (2.2). Subtracting the equation (2.2) from the resulting equation, it

follows that

n−1∑

j=1

∆`1jψj(u+ bjv) = ∆h1P (u) + ∆k1Q(v) + ∆(h1,k1)R(u, v), u, v ∈ X(2. 3)

where `1j = h1 + bjk1 = (bj − bn)k1, j = 1, . . . , n − 1. Let h2 be an arbitrary element of X .
Let k2 = −b−1

n−1h2. Then h2 + bn−1k2 = 0. Substitute u + h2 for u and v + k2 for v in the

equation (2.3). Subtracting equation (2.3) from the resulting equation, it follows that

n−2∑

j=1

∆`2j∆`1jψj(u+ bjv) = ∆h2∆h1P (u) + ∆k2∆k1Q(v)(2. 4)
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+∆(h2,k2)∆(h1,k1)R(u, v), u, v ∈ X ,

where `2j = h2 + bjk2 = (bj − bn−1)k2, j = 1, . . . , n− 2. Following similar arguments. we get

the equation

(2. 5)

∆`n−1,1∆`n−2,1 . . .∆`1,1ψ1(u+ b1v) = ∆hn−1∆hn−2 . . .∆h1P (u)

+∆kn−1∆kn−2 . . .∆k1Q(v)

+∆(hn−1,kn−1)∆(hn−2,kn−2) . . .∆(h1,k1)R(u, v),

for u, v ∈ X , where hm are arbitrary elements in X , km = −b−1
n−m+1hm,m = 1, 2, . . . , n −

1, `mj = hm + bjkm = (bj − bn−m+1km, j = 1, 2, . . . n−m. Let hn be an arbitrary element of

X . Let kn = −b−1
1 hn. Then hn + b1kn = 0. Substitute u + hn for u and v + kn for v in the

equation (2.5). Subtracting the equation (2.5) from the resulting equation, we get that

∆hn∆hn−1 . . .∆h1P (u) + ∆kn∆kn−1 . . .∆k1Q(v)(2. 6)

+∆(hn,kn)∆(hn−1,kn−1) . . .∆(h1,k1)R(u, v) = 0, u, v ∈ X .

Let hn+1 be an arbitrary element of X . Substitute hn+1 for u in the equation (2.6). Sub-

tracting the equation (2.6) from the resulting equation, we obtain that

∆hn+1∆hn∆hn−1 . . .∆h1P (u)(2. 7)

+∆(hn,kn)∆(hn−1,kn−1) . . .∆(h1,k1)R(u, v) = 0, u, v ∈ X .

Observe that, if h and k are arbitrary elements of the space X , it follows that

∆`+1
(h,k)R(u, v) = 0, u, v ∈ X(2. 8)

for some integer ` ≥ 0 since R(u, v) is a polynomial in (u, v) by hypothesis. Since hm,m =

1, . . . , n + 1 are arbitrary elements of the space X , let us choose h1 = . . . = hn+1 = h ∈ X
in the equation (2.7) and apply the operator ∆`+1

(h,k) to both sides of the resulting equation.

Applying the equation (2.8) now leads to the equation

∆`+n+2
h P (u) = 0, u, h ∈ X .(2. 9)
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Hence the function P (u) is a polynomial of degree at most `+ n+ 1.

Remarks: Let ` be the degree of the polynomial R(u, v) in Theorem 2.2. Following the

methods in Kagan et al. (1973), it can be shown that the degree of the polynomial P (u) in

Theorem 2.1 does not exceed max(n, `) where n is the number of functions in the left side of

the functional equation (2.2).

Two generalized random fields Φ and Ψ are said to be “determined up to a Gaussian

generalized random field” if there exist a generalized random field Λ such that Φ = Ψ + Λ

almost surely. They are said to be determined up to “translation” if there exists a generalized

function m such that Φ = Ψ +m almost surely.

3 Main Results

We now prove a theorem characterizing generalized random fields up to Gaussian factors.

Theorem 3.1: Let Φi, 0 ≤ i ≤ 3 be four Q-independent generalized random fields on X and

let

Ψ1 = Φ0 + Φ1 + Φ2 + Φ3(3. 1)

Ψ2 = β0Φ0 + β1Φ1 + β2Φ2 + β3Φ3

where βi, 0 ≤ i ≤ 3 are non-zero real numbers such that βi 6= βj , 0 ≤ i 6= j ≤ 3. Further

suppose that the joint characteristic functional H(φ, ψ) of (Ψ1,Ψ2) does not vanish. If Li(φ)

and Mi(φ) are two alternate possible characteristic functionals of the generalized random

field Φi, 0 ≤ i ≤ 3, then

Lj(φ) = Mj(φ) exp(i mj(φ)− 1

2
Bj(φ, φ)), 0 ≤ j ≤ 3(3. 2)

for some generalized functions mj(φ), 0 ≤ j ≤ 3 and for some continuous bilinear Hermitian

functionals Bj(φ, ψ), 0 ≤ j ≤ 3.

Proof: Let Γi, 0 ≤ i ≤ 3 be Q-independent generalized random fields on X such that the

two-dimensional generalized random field (Σ1,Σ2) where

Σ1 = Γ0 + Γ1 + Γ2 + Γ3(3. 3)
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Σ2 = β0Γ0 + β1Γ1 + β2Γ2 + β3Γ3

has the same joint characteristic functional H(φ, ψ) as that of (Ψ1,Ψ2). Let Li(.) and

Mi(.), 0 ≤ i ≤ 3 be the characteristic functionals of Φi and Γi, 0 ≤ i ≤ 3 respectively.

From the Q-independence of the generalized random fields Φi, 0 ≤ i ≤ 3, it follows that

H(φ, ψ) = Π3
i=0Mi(φ+ βiψ) exp(P1(φ, ψ)), φ, ψ ∈ X

for some polynomial P1(φ, ψ). From the Q-independence of the generalized random fields

Γi, 0 ≤ i ≤ 3, it follows that

H(φ, ψ) = Π3
i=0Li(φ+ βiψ) exp(P2(φ, ψ)), φ, ψ ∈ X

for some polynomial P2(φ, ψ). Hence

H(φ, ψ) = Π3
i=0Mi(φ+ βiψ) exp(P1(φ, ψ))(3. 4)

= Π3
i=0Li(φ+ βiψ) exp(P2(φ, ψ)), φ, ψ ∈ X .

Since H(φ, ψ) 6= 0 for all φ, ψ ∈ X by hypothesis, the equation given above implies that

Li(φ+ βiψ) 6= 0, 0 ≤ i ≤ 3 and Mi(φ+ βiψ) 6= 0, 0 ≤ i ≤ 3 for all φ, ψ ∈ X . Let

Ji(φ) = log
Li(φ)

Mi(φ)
, 0 ≤ i ≤ 3

where the logarithm is taken to be the continuous branch with Ji(0) = 0. The equation (3.4)

implies that
3∑

i=0

Ji(φ+ βiψ) = P1(ψ, φ)− P2(ψ, φ), φ, ψ ∈ X(3. 5)

where P1(., .) and P2(., .) are polynomials. Since βi 6= βj , 0 ≤ i 6= j ≤ 3 and βj 6= 0, applying

arguments similar to those in the proof of Lemma 1.5.1 in Kagan et al. (1973), it follows that

the functions Ji(φ), i = 0, . . . , 3 are polynomials in φ on X . Hence there exists polynomials

fj(φ) such that

Lj(φ) = Mj(φ) exp[fj(φ)], φ ∈ X , 0 ≤ j ≤ 3.(3. 6)

Note that the functional Lj(, ) on the left side of the equation (3.6) is a characteristic func-

tional and it is non-vanishing by the equation (3.4). Hence the function on the right side

of the equation is also a non-vanishing characteristic functional which in turn implies that
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the functional exp[fj(φ)], φ ∈ X is a characteristic functional by the one-to-one correspon-

dence between the probability measures and the characteristic functionals on the space X .
An application of the Marcinkeiwicz lemma (cf. Theorem 2.1) implies that the degree of the

polynomial fj(.) can not exceed two. It can be shown that

Lj(φ) = Mj(φ) exp(i mj(φ)− 1

2
Bj(φ, φ)), 0 ≤ j ≤ 3(3. 7)

for some generalized functions mj(φ), 0 ≤ j ≤ 3 and for some continuous bilinear Hermitian

functional Bj(φ, ψ), 0 ≤ j ≤ 3 by arguments similar to those in Prakasa Rao (1976), p.281.

The following theorem can be proved by arguments similar to those given above. We

omit the details.

Theorem 3.2: Let Φi, 0 ≤ i ≤ 2 be four Q-independent generalized random fields on X and

let

Ψ1 = Φ0 + Φ1 + Φ2(3. 8)

Ψ2 = β0Φ0 + β1Φ1 + β2Φ2

where βi, 0 ≤ i ≤ 2 are non-zero real numbers such that βi 6= βj , 0 ≤ i 6= j ≤ 2. Further

suppose that the joint characteristic functional H(φ, ψ) of (Ψ1,Ψ2) does not vanish. If Li(φ)

and Mi(φ) are two alternate possible characteristic functionals of the generalized random

field Φi, 0 ≤ i ≤ 2, then

Lj(φ) = Mj(φ) exp(i mj(φ)), 0 ≤ j ≤ 2(3. 9)

for some generalized functions mj(φ), 0 ≤ j ≤ 2.
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Abstract

In this paper, we introduce a new family of continuous distributions called the Kumaraswamy
discrete Linnik generalized family of distributions. Our proposed family of distributions is a
mass collection of family of distributions such as Kumaraswamy discrete Mittag-Leffler gener-
alized family of distributions, Kumaraswamy Marshall-Olkin generalized family of distributions,
Kumaraswmay truncated negative binomial generalized family of distributions, etc. In particular,
we study Kumaraswamy truncated discrete Mittag-Leffler exponential (Kw-DML-E) distribution in
detail. The Kw-DML-E distribution contains Kumaraswamy Marshall-Olkin exponential distribu-
tion, Kumaraswamy generalized exponential distribution, Marshall-Olkin generalized exponential
distribution, Marshall-Olkin exponential distribution, generalized exponential distribution and ex-
ponential distribution as special case. The density function of Kw-DML-E is symmetrical or right
skewed and has constant, increasing or decreasing, hazard rate. We derive explicit expression for
the moments, generating functions and quantiles. Two characterizations of Kw-DML-E distribu-
tion are obtained. The method of maximum likelihood is used to estimate the model parameters.
The existence and uniqueness of maximum likelihood estimates are proved. Simulation studies are
also performed. An application to a real data set is presented to illustrate the potentiality of our
proposed model.

Keywords: Discrete Linnik distribution, Discrete Mittag-Leffler distribution, Exponential
distribution, Kumaraswamy distribution, Marshall-Olkin family of distributions, Maximum
likelihood.

1. Introduction

By various methods, new parameters can be introduced to expand families of distributions for
added flexibility or to construct covaraite model. The addition of parameters has been proved
useful in exploring skewness and tail properties, and also for improving the goodness-of-fit of the
generated family. Introduction of a scale parameter leads to accelerate life model and taking
powers of survival function introduces a parameter that leads to proportional hazards model.
Also, the extended distributions have attracted several statisticians to develop new models because
the analytical and computational facilities available in programming softwares such as Mathcad,
Mapple, MathLab and R can easily tackle the problems involved in computing special functions in
these extended distributions.

Marshall and Olkin (1997) introduced a new family of distributions by adding a parameter to a
family of distributions. They started with a parent survival function F (x) and considered a family
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of survival functions given by

G(x; p) =
pF (x)

F (x) + pF (x)
, p > 0 x ∈ R. (1)

They described the motivation for the family of distributions (1) as follows:
Let X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.) random variables
with survival function F (x). Let

UN = min(X1, X2, ..., XN ), (2)

where N is the geometric random variable with probability mass function (pmf) P (N = n) =
p(1−p)n−1, for n = 1, 2, . . . and 0 < p < 1 and independent of X ′is. Then the random variable UN
has the survival function given by (1). If p > 1 andN is a geometric random variable with pmf of the
form P (N = n) = 1

p(1− 1
p)n−1, n = 1, 2, . . . , then the random variable VN = max(X1, X2, . . . , XN )

also has the survival function as (1).
If X1, X2, . . . is a sequence of i.i.d. random variables with distribution in the family (1), and

if N has a geometric distribution on {1, 2, . . .}, then min(X1, . . . , XN ) and max(X1, . . . , XN ) have
distributions in the family. The extreme value distributions are limiting distribution for extreme,
and as such they are sometimes useful approximations. In practice, a random variable of interest
may be the extreme of only finite, possibly random, number N of random variables. When N has
a geometric distribution, the random variable has a particular nice stability property, not unlike
that of extreme value distributions. The geometric-extreme stability property of G(x; p) is rather
remarkable, and it depends upon the fact that a geometric sum of i.i.d. geometric random variables
has a geometric distribution. This partially explains why random minimum stability cannot be
expected if the geometric distribution is replaced by some other distribution on {1, 2, . . .}. For
more discussion on geometric-extreme stability, see Arnold et al. (1986) and Marshall and Olkin
(1997).

Pillai and Jayakumar (1995) introduced a class of discrete distributions containing geometric
and it is named as discrete Mittag-Leffler (DML) distribution, since it arises as a discrete analogue
of the well-known continuous Mittag-Leffler distribution introduced by Pillai (1990). The DML
distribution is the distribution of Z = X1 +X2 + . . .+XN where Xi’s are i.i.d. Sibuya(α) random
variables and N is geometric independent of Xi’s. Note that the Sibuya random variable represents
the number of trails till the first success in a sequence of independent Bernoulli trails, where the
probability of success varies with trail, and for the kth trail, probability of success equals k

n . The
probability generating function (pgf) of DML distribution is

H(s) =
1

1 + c(1− s)α , c > 0, 0 < α ≤ 1, |s| ≤ 1.

Note that, when α = 1, H(s) is the pgf of geometric distribution. Also Pillai and Jayakumar (1995)
showed that DML distribution is infinitely divisible, geometrically infinitely divisible and belongs
to discrete class L. For the application of DML distribution, see also Huillet (2016).

Sankaran and Jayakumar (2016) considered the distribution of UN in (2) when Xi’s are i.i.d.
random variables having cumulative distribution function (cdf) F (x) and N is truncated DML,
independent of Xi’s, with parameters α and c. They showed that the survival function of UN is

Ḡ(x;α, c) =
1− Fα(x)

1 + cFα(x)
. (3)
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Like the Marshall-Olkin family of distributions, the family of distributions generated through
truncated DML distribution is also geometric extreme stable. Note that, when Marshall-Olkin
method is applied to Fα, then the resulting survival function coincides with (3). The family of
distributions generated through truncated DML distribution is a generalization of Marshall-Olkin
family of distributions in the sense that it reduces to the Marshall-Olkin family when α = 1 and
c = 1−p

p .
Nadarajah, Jayakumar and Ristić (2013) introduced a family of life time models, using trun-

cated negative binomial distribution with pmf given by

P (N = n) =
αθ

1− αθ
(
θ + n− 1
θ − 1

)
(1− α)n, n = 1, 2, . . . ,

where α > 0 and θ > 0. The authors showed that the random minimum, UN = min(X1, X2, . . . , XN )
has the survival function of the form

G(x;α, θ) =
αθ

1− αθ [(F (x) + αF (x))
−θ − 1], (4)

when Xi’s are i.i.d. random variables having distribution function F (x) and N is truncated negative
binomial with parameter α and θ. Note that if α → 1 then G(x;α, θ) → F (x). The family of
distributions given in (4) is a generalization of Marshall-Olkin family of distributions, in the sense
that when θ = 1, (4) reduces to (1).

In recent years, heavy-tailed models have been used in a variety of fields, such as mathematical
finance, financial economics and statistical physics. In the framework of integer valued distribu-
tions, the discrete stable is a well known heavy-tailed law originally suggested by Steutel and van
Harn (1979). Jayakumar and Sreenivas (2003) generalized the concept of Poisson mixtures to
discrete stable mixtures and showed that, the distributions on Z+ that can be approximated by
mixtures of discrete Linnik distributions are discrete stable mixtures. Christoph and Schreiber
(1998) emphasized that the discrete stable law may be seen as a special case of discrete Linnik law
studied in Devroye (1993). Hence owing to the extra parameter, the discrete Linnik is a heavy-tailed
distribution family which is more flexible than the discrete stable. Discrete Linnik distribution is
a rich family of distributions which includes many important distributions. It belongs to the class
of discrete self decomposable distributions. When ν = 1, we get DML distribution and for α = 1,
it coincides with negative binomial distribution. For α = 1 and ν = 1, we get the geometric
distribution.

The pgf of discrete Linnik distribution with parameters α, c and ν is

H(s) =





(
1

1+c(1−s)α
)ν

for 0 < ν <∞

e−c(1−s)
α

for ν =∞.

Jayakumar and Sankaran (2018) introduced a new family of distributions with parameters α, c
and ν having survival function

Ḡ(x, α, c, ν) =
(1 + c)ν − [1 + cFα(x)]ν

[(1 + c)ν − 1][1 + cFα(x)]ν
. (5)

Note that the survival function in (5) is the survival function of UN in (2), where Xi’s are i.i.d.
random variables with cdf F (x) and N is truncated discrete Linnik distribution with parameters
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α, c and ν and N is independent of Xi’s. It can be seen that the family of distributions generated
through truncated negative binomial and truncated discrete Linnik are not extreme stable.

Kumaraswamy (1980) introduced a probability distribution for handling double bounded ran-
dom processes with varied hydrological applications. The cumulative distribution function (cdf)
of Kumaraswamy distribution is given by

F (x) = 1− {1− xa}b; a > 0, b > 0, x ∈ [0, 1]. (6)

The beta distribution also provides the premier family of continuous distribution on bounded
support which has been utilized extensively in statistical theory and practice (see Nadarajah and
Gupta (2007)). Gupta and Nadarajah (2004) provides a comprehensive account of the theory and
applications of beta family of distributions. Like beta distribution, Kumaraswamy distribution
also originally defined on the unit interval [0, 1] but easily extended to any finite interval and can
take an amazingly great variety of forms. Thus it can be fitted practically to any data representing
a phenomenon in almost any field of applications. One interpretation for integer-valued a and b
through maxima and minima of i.i.d. random components is by Jones(2009). If we assuming that
a = m and b = n are positive integers, we can find, xm is the cdf of the maximum of i.i.d. standard
uniform variables, with the corresponding survival function 1−xm. Thus, the quantity {1−xm}n in
(6) is the minimum of n such random variables, with G being the corresponding cdf. This property
discussed in Jones (2009), motivated the name minimax for this distribution. Kozubowski and
Podgórski (2018) extended this interpretation to the general Kumaraswamy distribution using the
result of min/max of i.i.d. components with random number to the relevant pgf.

In this paper, we propose a new family of distributions, by minimax of distributions generated
through truncated discrete Linnik distribution. The main motivation of this paper are:

1. To introduce a new class of univariate distributions as a generalization of families of distribu-
tions such as Kumaraswamy discrete Mittag-Leffler G family of distributions, Kumaraswamy
truncated negative binomial G family of distributions, Kumaraswamy Marshall-Olkin G fam-
ily of distributions introduced by Alizadeh et al. (2015), Kumaraswamy-G family of distri-
butions introduced by Cordeiro and de Castro (2011), exponentiated Marshall-Olkin family
of distributions introduced by Dias et al. (2016), etc.

2. According to the choice of baseline distribution, the shape of the density function can be
symmetrical, left skewed, right skewed and reversed-J shaped. Also the hazard function can
be constant, increasing, decreasing, upside-down bathtub, bathtub and S-shaped.

3. To introduce and study one member of minimax geometric-extreme stable distribution namely
Kumaraswamy discrete Mittag-Leffler exponential distribution.

This paper is organized as follows. We introduce Kumaraswamy discrete Linnik G (Kw-DL-G)
family of distributions in Section 2 and discuss its various sub models. In Section 3, a sub model of
Kw-DL-G, namely, Kumaraswamy discrete Mittag-Leffler -G family is obtained. As a special case,
Kumaraswamy discrete Mittag-Leffler exponential distribution (Kw-DML-E), a new generalization
of exponential distribution is introduced in Section 4. The shape properties of density and hazard
function are studied. It can be seen that Kw-DML-E distribution contains Kumaraswamy Marshall-
Olkin exponential distribution, Kumaraswamy generalized exponential distribution, Kumaraswamy
exponential distribution, Marshall-Olkin generalized exponential distribution, Marshall-Olkin ex-
ponential distribution, generalized exponential distribution and exponential distribution. In Sec-
tion 5, some structural properties of Kw-DML-E distribution such as moments and generating
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function, quantiles, unimodality, and stochastic ordering are studied. A method of generation of
Kw-DML-E random variables is discussed in this section. It can be seen that the generation of
the random variables is simple. Two characterizations of Kw-DML-E distribution are obtained in
Section 6. Estimation of the modal parameters by maximum likelihood is performed in Section
7. The existence and uniqueness of maximum likelihood estimates are proved. Simulation studies
are also carried out in order to establish the consistency property of the maximum likelihood esti-
mates of our proposed model. An application to a real data set to illustrate the potentiality of the
new family is presented in Section 8. It can be seen that Kw-DML-E distribution performs well
compared to seven well known distributions. The paper is concluded in Section 9.

2. Kumaraswamy discrete Linnik G family of distributions

Let X ∼ truncated discrete Linnik G family of distribution with cdf

G(x) =
1

(1− pν)

[p+ (1− p)Gα(x)]− pν
[p+ (1− p)Gα(x)]ν

(7)

We define the cdf of Kumaraswamy discrete Linnik G (Kw-DL-G) family of distributions as

F (x) = 1−
{

1−
[

1

(1− pν)

[p+ (1− p)Gα(x)]− pν
[p+ (1− p)Gα(x)]ν

]a}b
, (8)

where a > 0, b > 0 and 0 < p < 1 are the additional parameters. For each baseline G, the Kw-DL-G
cdf is given by (8). It can be seen that equation (8) provides a class of wider family of continuous
distributions. It includes the Kumaraswamy discrete Mittag-Leffler G family of distributions,
Kumaraswamy truncated negative binomial G family of distributions, Kumaraswamy Marshall-
Olkin G family of distributions, Kumaraswamy G family of distributions, etc. Some special cases
of the Kw-DL-G models are presented in Table 1.

Sl.No. a b p α ν G(x) Reduced model

1 - - - - 1 G(x) The Kw-discrete Mittag-Leffler G family of distributions

2 - - - 1 - G(x) The Kw-negative binomial G family of distributions

3 - - - 1 1 G(x) The Kw- Marshall-Olkin G family of distributions

4 - - 1 1 1 G(x) The Kw- G family of distributions

5 1 1 - - - G(x) The discrete Linnik G family of distributions

6 1 1 - - 1 G(x) The discrete Mittag-Leffler G family of distributions

7 1 1 - 1 - G(x) The negative binomial G family of distributions

8 1 1 - 1 1 G(x) The Marshall-Olkin family of distributions

9 - 1 - 1 1 G(x) The exponentiated Marshall-Olkin family of distributions

10 1 - 1 1 1 G(x) The proportional reversed hazard rate model

11 - 1 1 1 1 G(x) The proportional hazard rate model

12 1 1 1 1 1 G(x) G(x)

Table 1: Some special cases of Kw-DL-G distribution.
The density function corresponding to (8) is given by

f(x) = abα(1− p)g(x)Gα−1(x) [(p+ (1− p)Gα(x)) (1− ν) + νpν ]
[(

1

1− pν
)a [p+ (1− p)Gα(x)− pν ]a−1

[p+ (1− p)Gα(x)]ν(a+1)

] [
1−

{
1

(1− pν)

[p+ (1− p)Gα(x)]− pν
[p+ (1− p)Gα(x)]ν

}a]b−1
.(9)
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The equation (9) will be most tractable when the cdf G(x) and the pdf g(x) have simple analytic
expressions.

The hazard rate function corresponding to F (x) in (8) is

h(x) = abα(1− p)g(x)Gα−1(x) [(p+ (1− p)Gα(x)) (1− ν) + νpν ][(
1

1− pν
)a [p+ (1− p)Gα(x)− pν ]a−1

[p+ (1− p)Gα(x)]ν(a+1)

]
1[

1−
{

1
(1−pν)

[p+(1−p)Gα(x)]−pν
[p+(1−p)Gα(x)]ν

}a] . (10)

3. Kumaraswamy truncated discrete Mittag-Leffler G (Kw-DML-G) distribution

For analytical tractability, let ν = 1 in (8). Then we obtain the distribution function of
Kumaraswamy truncated discrete Mittag-Leffler G family of distributions as

F (x) = 1−
{

1−
[

Gα(x)

p+ (1− p)Gα(x)

]a}b
. (11)

From (11), the pdf of Kw-DML-G distribution is

f(x) = abαp g(x)
Gαa−1(x)

[p+ (1− p)Gα(x)]a+1

{
1−

[
Gα(x)

p+ (1− p)Gα(x)

]a}b−1
. (12)

The corresponding hazard rate function is given by

h(x) =
abαp g(x)Gαa−1(x)

[p+ (1− p)Gα(x)][(p+ (1− p)Gα(x))a −Gαa(x)]
. (13)

Note that when α = 1, in (11) we obtain, Kumaraswamy Marshall-Olkin G family of distributions
introduced and studied by Alizadeh et al. (2015).

Now, our study focuss on one member of Kw-DML-G distribution, namely, Kumaraswamy
truncated discrete Mittag-Leffler exponential distribution, in detail.

4. A new generalization of exponential distribution

4.1. Distribution function

Let X follows exponential distribution with parameter λ > 0 having cdf G(x) = 1− e−λx and
pdf g(x) = λe−λx. Hence from (11), the distribution function of the random variable X is given by

F (x) = 1−
{

1−
[

(1− e−λx)α

p+ (1− p)(1− e−λx)α

]a}b

= 1− η1Γ(b+ 1)Γ(aj + k)e−mλx

Γ(b+ j + 1)Γaj
(14)

where

η1 =
∞∑

j=0

∞∑

k=0

∞∑

l=0

∞∑

m=0

(1− p)k(−1)j+l+mΓ(k + 1)Γ(aα(j + 1) + αl)

j!k!l!m!Γ(k − l + 1)

by using generalized binomial expansion.

16



4.2. Probability density function

The pdf of the new distribution is given by

f(x; a, b, α, p, λ) =
abαpλe−λx(1− e−λx)aα−1

[p+ (1− p)(1− e−λx)α]a+1

{
1−

[
(1− e−λx)α

p+ (1− p)(1− e−λx)α

]a}b−1

= η1η2e
−(m+1)λx (15)

where

η2 =
abαλpΓbΓa(j + 1) + k + 1

Γ(b− j)Γ[a(j + 1) + 1]Γaα(j + 1) + αl −m
using generalized binomial expansion.
We refer to this new distribution as Kumaraswamy truncated discrete Mittag-Leffler exponential
(Kw-DML-E) distribution with parameters a, b, α, p and λ. We write it as Kw-DML-E(a, b, α, p, λ).

The shape of the density function is described analytically. The critical points of the density
function of Kw-DML-E model is the roots of the equation ∂ log f(x)

∂x =0 which yields

0 = −λ+ (aα− 1)
e−λx

1− e−λx −
a(b− 1)αpλe−λx(1− e−λx)aα−1

[p+ (1− p)(1− e−λx)α] {[p+ (1− p)(1− e−λx)α]a − (1− e−λx)aα}

−(a+ 1)(1− p)αλe−λx(1− e−λx)α−1

[p+ (1− p)(1− e−λx)α]
. (16)

There may be more than one roots of the above equation. Let k(x) = ∂2 log f(x)
∂x2

: We have

k′(x) = −(aα− 1)λ2e−λx

(1− e−λx)2
− a(b− 1)αλpe−λx(1− e−λx)aα−1

[p+ (1− p)(1− e−λx)α] ([p+ (1− p)(1− e−λx)α]− (1− e−λx)aα)

−(a+ 1)(1− p)αλ2e−λx(1− e−λx)α−1

p+ (1− p)(1− e−λx)α
+

(a+ 1)(1− p)(α− 1)αλ2e−2λx(1− e−λx)α−2

p+ (1− p)(1− e−λx)α

−(a+ 1)(1− p)2α2λ2e−2λx(1− e−λx)2(α−1)

[p+ (1− p)(1− e−λx)α]2
(17)

If x = x0 is a root of ∂ log f(x)
∂x = 0, then it corresponds to a local maximum if ∂2 log f(x)

∂x2
> 0 for all

x < x0 and ∂2 log f(x)
∂x2

< 0 for all x > x0. It corresponds to a local minimum if ∂2 log f(x)
∂x2

< 0 for all

x < x0 and ∂2 log f(x)
∂x2

> 0 for all x > x0. It refers the inflexion point if either ∂2 log f(x)
∂x2

> 0 for all

x 6= x0 or ∂2 log f(x)
∂x2

< 0 for all x 6= x0.
The graph of f(x) for different values of the parameters is given in Figure 1.
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Figure 1: Probability density function of Kw-DML-E distribution for different parameter values.
Some distributions that arises as special case of the Kw-DML-E(a, b, α, p, λ) distribution are

given below.
Case I: α = 1

f(x; a, b, 1, p, λ) =
abpλe−λx(1− e−λx)a−1

[p+ (1− p)(1− e−λx)]a+1

{
1−

[
(1− e−λx)

[p+ (1− p)(1− e−λx)]

]a}b−1
.

This is Kumaraswamy Marshall-Olkin exponential distribution studied in George and Thobias
(2018).
Case II: p = 1

f(x; a, b, α, 1, λ) = abαλe−λx(1− e−λx)aα−1
{

1− (1− e−λx)aα
}b−1

.

This is Kumaraswamy generalized exponential distribution studied in Mohammed (2014).
Case III: α = 1, p = 1

f(x; a, b, 1, 1, λ) = abλe−λx(1− e−λx)a−1[1− (1− e−λx)a]b−1.

This is Kumaraswamy exponential distribution.
Case IV: a = 1, b = 1

f(x; 1, 1, α, p, λ) =
αpλe−λx(1− e−λx)α−1

[p+ (1− p)(1− e−λx)α]2
.

This is Marshall-Olkin generalized exponential distribution studied in Ristić and Kundu (2015).
Case V: a = 1, b = 1, α = 1

f(x; 1, 1, 1, p, λ) =
pλe−λx

[p+ (1− p)(1− e−λx)]2
,

which is the Marshall-Olkin exponential distribution studied in Marshall and Olkin (1997).
Case VI: a = 1, b = 1, p = 1

f(x; 1, 1, α, 1, λ) = αλe−λx(1− e−λx)α−1,

which is the generalized exponential distribution introduced and studied by Gupta and Kundu
(1999).
Case VI: a = 1, b = 1, α = 1, p = 1

f(x; 1, 1, 1, 1, λ) = λe−λx,

which is the exponential distribution.
So Kw-DML-E(a, b, α, p, λ) distribution is a rich family of distributions that contains many existing
distributions.
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4.3. Hazard rate

The hazard rate is given by

h(x) =
abαpλe−λx(1− e−λx)aα−1

[p+ (1− p)(1− e−λx)α] {[p+ (1− p)(1− e−λx)α]a − (1− e−λx)aα} (18)

The critical point of h(x) is the roots of the equation ∂ log h(x)
∂x = 0, which yields

0 = −λ+
(aα− 1)λe−λx

(1− e−λx)
− αλ(1− p)e−λx(1− e−λx)α−1

p+ (1− p)(1− e−λx)α

−aαλ
{

[p+ (1− p)(1− e−λx)α]a−1(1− p)(1− e−λx)α−1 − (1− e−λx)aα−1
}

{[p+ (1− p)(1− e−λx)α]a − (1− e−λx)aα} . (19)

There may be more than one roots for (19). Let τ(x) = ∂2log[h(x)]
∂x2

. We have

τ(x) = − (aα− 1)λ2e−λx

(1− e−λx)2
+
αλ2(1− p)e−λx(1− e−λx)α−1

[p+ (1− p)(1− e−λx)α]
−

α(α− 1)λ2(1− p)e−2λx(1− e−λx)α−2

[p+ (1− p)(1− e−λx)α]
+
α2λ2(1− p)2e−2λx(1− e−λx)2α−1

[p+ (1− p)(1− e−λx)α]2
−

aαλ

A
{(a− 1)(1− p)2e−λx(1− e−λx)2(α−1) [p+ (1− p)(1− e−λx)α]a−2+

(α− 1)(1− p)λe−λx(1− e−λx)α−2[p+ (1− p)(1− e−λx)α]a−1 − λ(aα− 1)e−λx(1− e−λx)aα−2}−
aαλ

A2
{(1− p)(1− e−λx)α−1[p+ (1− p)(1− e−λx)α]a−1 − (1− e−λx)aα+1}

{a(1− p)αλe−λx(1− e−λx)α−1[p+ (1− p)(1− e−λx)α]a−1 − aαλe−λx(1− e−λx)aα−1}.

where A = [p+ (1− p)(1− e−λx)α]a − (1− e−λx)aα.
If x = x0 is a root of (19), then it refers to a local maximum if τ(x) > 0 for all x < x0 and τ(x) < 0
for all x > x0. It corresponds to a local minimum if τ(x) < 0 for all x < x0 and τ(x) > 0 for all
x > x0. It gives an inflexion point if either τ(x) > 0 for all x 6= x0 or τ(x) < 0 for all x 6= x0.
The graph of h(x) for different values of the parameters are given in Figure 2.

Figure 2: Hazard rate function of Kw-DML-E distribution for different parameter values.
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5. General properties of the Kw-DML-E distribution

5.1. Moments and generating function

Let X ∼ Kw-DML-E(a, b, α, p, λ) for r = 1, 2, 3, . . ., the rth moment is given by

E(Xr) =

∫ ∞

0
xrf(x)dx

=
η1η2 r!

[λ(1 +m)]r+1

In particular, the mean of Kw-DML-E(a, b, α, p, λ) is

µ =
η1η2

[λ(1 +m)]2
.

The moment generating function is given by

MX(t) = E(etx)

=
η1η2

[λ(1 +m)− t] .

5.2. Simulation and Quantiles

The Kw-DML-E distribution is easily simulated by inverting the cdf. Let U has a unform
U(0, 1) distribution, then

1−
{

1−
[

(1− e−λx)α

1− (1− p)(1− (1− e−λx)α)

]a}b
= U

which yields

X =
−1

λ
log



1−

[
p[1− (1− U)

1
b ]

1
a

1− (1− p)[1− (1− U)
1
b ]

1
a

] 1
α



 . (20)

In addition, the qth quantile xq of Kw-DML-E distribution is given by

xq =
−1

λ
log



1−

[
p[1− (1− q) 1

b ]
1
a

1− (1− p)[1− (1− q) 1
b ]

1
a

] 1
α



 . (21)

0 < q < 1.
In particular, the median of Kw-DML-E distribution is given by

Median =
−1

λ
log



1−

[
p[1− (0.5)

1
b ]

1
a

1− (1− p)[1− (0.5)
1
b ]

1
a

] 1
α



 . (22)

The shape of the parameters a, b, α, p, λ on the skewness and kurtosis can be based on quantile
measures. There are many heavy distributions for which these measures are infinite. So, it becomes
uninformative precisely when it needs to be. The Bowley’s skewness is based on quantiles:

S =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
,
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and the Moors’ kurtosis is based on octiles:

K =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,

where Q(.) represents the quantile function of X. These measures are less sensitive to outliers and
they exist even for distributions without moments. Skewness measures the degree of the long tail
and kurtosis is a measure of the degree of peakedness. When the distribution is symmetric, S = 0
and when the distribution is left(or right) skewed, S < 0 (or S > 0). As K increases, the tail
of the distribution becomes heavier. We compute mean, median, variance, skewness and kurtosis
numerically using R software and presented in Table 2.

Mean Median Variance Skewness Kurtosis

a = 0.5 0.0401 0.0020 0.0167 7.8957 99.3075
a = 1.0 0.1137 0.0299 0.0505 4.6048 33.4564

b = 2.0 a = 1.5 0.1939 0.0834 0.0879 3.4870 18.9717
α = 0.5 a = 2.0 0.2783 0.1481 0.1213 2.9885 13.6498

a = 5.0 0.6723 0.5321 0.2841 1.7539 4.7844
a = 10.0 1.1198 0.9904 0.4165 1.2943 2.6842

b = 1.0 0.6588 0.3554 0.5935 2.6200 10.1723
b = 1.5 0.3944 0.2120 0.2568 2.8013 11.9250

a = 2.0 b = 2.0 0.2734 0.1481 0.1242 2.9017 13.0970
α = 0.5 b = 5.0 0.0802 0.0493 0.0126 2.6689 12.6204

b = 10.0 0.0373 0.0223 0.0020 2.7028 8.1505

α = 0.1 0.0207 0.0000 0.0098 11.0613 188.5540
α = 0.2 0.0701 0.0071 0.0336 5.9125 53.8973

a = 2.0 α = 0.5 0.2734 0.1481 0.1242 2.9017 13.0970
b = 2.0 α = 0.7 0.4099 0.2778 0.1764 2.3332 8.5485

α = 1.0 0.5950 0.4636 0.2368 1.9061 5.7999
α = 2.0 1.0600 0.9393 0.3464 1.4039 3.3196

Table 2: Mean, Median, Variance, Skewness and Kurtosis of Kw-DML-E distribution for some
parameter values when p = 0.5 and λ = 1.0.
From Table 2, we can see that Kw-DML-E distribution is positively skewed and under dispersed.
Also the distribution is leptokurtic. When a and α is increasing, mean,median and variance are
increasing while when b is increasing, mean, median and variance are decreasing.
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Figure 3: Skewness and kurtosis plots of the Kw-DML-E distribution for some parameter values.

Figure 3 also depicts plots for the skewness and kurtosis coefficients related to additional parame-
ters. In the figure, a and α behaves alike as decreasing while b fluctuate in an interval. These plots
indicate that both measures can be very sensitive on these shape parameters. Thus, indicating the
importance of the proposed distribution.

5.3. Unimodality

The pdf of the Kw-DML-E model is either decreasing or unimodal. In order to investigate the
critical points of density function, its first derivative with respect to x is

f ′(x) =
abαpλ2(1− e−λx)aα−1

[p+ (1− p)(1− e−λx)α]a+1
Db−1(x)

[
1− e−λx

1− e−λx +
(a+ 1)α(1− p)e−λx(1− e−λx)α−2

[p+ (1− p)(1− e−λx)α]

]
+

a2b(b− 1)α2pλ2e−2λx(1− e−λx)α(2a+1)−2

[p+ (1− p)(1− e−λx)α]2(a+1)
Db−2(x) = 0, (23)

where D(x) = 1−
[

(1−e−λx)α
p+(1−p)(1−e−λx)α

]a
.

There may be more than one root to (23). If x = x0 is a root of (23), then it corresponds to a
local maximum if f ′(x) > 0 for all x < x0 and f ′(x) < 0 for all x < x0. It corresponds to a local
minimum if f ′(x) < 0 for all x < x0 and f ′(x) > 0 for all x > x0. It corresponds to a point of
inflexion if either f ′(x) > 0 for all x 6= x0 or f ′(x) < 0 for all x 6= x0.
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5.4. Stochastic ordering

Stochastic orders have been used during the last forty years, at an accelerated rate, in many
diverse areas of probability and statistics. Such areas include reliability theory, survival analy-
sis, queueing theory, biology, economics, insurance and actuarial science (see, Shaked and Shan-
thikumar (2007)). Let X and Y be two random variables having distribution functions F and G
respectively, and denote by F̄ = 1 − F and Ḡ = 1 − G their respective survival functions, with
corresponding pdf’s f, g. The random variable X is said to be smaller than Y in the:
(i) stochastic order (denoted as X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x;
(ii)likelihood ratio order (denoted as X ≤lr Y ) if f(x)/g(x) is decreasing in x ≥ 0;
(iii) hazard rate order (denoted as X ≤hr Y )if F̄ (x)/Ḡ(x) is decreasing in x ≥ 0;
(iv) reversed hazard rate order (denoted as X ≤rhr Y ) if F(x)/G(x) is decreasing in x ≥ 0. The
four stochastic orders defined above are related to each other, as the following implications (see,
Shaked and Shanthikumar (2007)):

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (24)

Let X ∼ Kw-DML-E(a, b1, α, p, λ) and Y ∼ Kw-DML-E(a, b2, α, p, λ). If b2 < b1, then

fX(x)

fY (x)
=
b1

{
1−

[
(1−e−λx)α

p+(1−p)(1−e−λx)α
]a}b1−1

b2

{
1−

[
(1−e−λx)α

p+(1−p)(1−e−λx)α
]a}b2−1

Since b2 < b1,

d

dx

[
fY (x)

fX(x)

]
=

b1
b2

a(b2 − b1)αpλe−λx
(1− e−λx)[p+ (1− p)(1− e−λx)α]

[
(1− e−λx)α

p+ (1− p)(1− e−λx)α

]a

{
1−

[
(1− e−λx)α

p+ (1− p)(1− e−λx)α

]a}b1−b2−1

< 0

Hence fX(x)/fY (x) is decreasing in x. That is X ≤rhr Y . The remaining statements follow from
the implication (24).

6. Characterization of Kw-DML-E distribution

Characterization of distributions are important to many researchers in the applied field. An
investigator will be vitally interested to know if their model fits the requirements of a particular
distribution. To this end, one will depend on the characterizations of this distribution which provide
conditions under which a given model has the particular distribution. Various characterizations
of distributions have been established in many different directions in the literature (see Gupta
(2009)).

6.1. Characterization based on truncated moments

Here the characterization results will employ the result due to Glanzel(1987). The advantage
of the characterizations given here is that cdf F need not have a closed form and are given in terms
of an integrand depends on the solution of a first order differential equation, which can serve as a
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bridge between probability and differential equation. First we state the characterization theorem
due to Glanzel(1987).

Theorem 6.1 : Let (Ω,F ,P) be a probability space and let H=[a,b] be an interval for some
a < b (a = −∞, b =∞ might as well be defined). Let X : Ω→ H be a continuous random variable
with the distribution function F and let h and g be two real functions defined on H such that

E[g(X)|X ≥ x]

E[h(X)|X ≥ x]
= η(x), x ∈ H,

is defined with some real function η. Assume that h, g ∈ C1(H), η ∈ C2(H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ηh = g has no real solution in the interior of H. Then F is uniquely determined by the
functions h, g and η, particularly

F (x) =

∫ x

a
C

∣∣∣∣
η′(u)

η(u)h(u)− g(u)

∣∣∣∣ e−s(u)du,

where the function s is a solution of the differential equation s′ = η′h
ηh−g and C is a constant, chosen

to make
∫
H dF = 1.

The stability property of Theorem 6.1 results to special task in statistical practice such as the
estimation of the parameters of discrete distributions. Since the function triplet is not uniquely
determined, it is often possible to chosen η as a linear function. In some cases, we can take h(x) = 1,
which reduce the condition of Theorem 6.1 to E[g(X)|X ≥ x] = η(x), x ∈ H. However, adding an
extra function will give much more flexibility, when its application is concerned.

Proposition 6.1: Let X : Ω → (0,∞) be a continuous random variable and let g(x) ={
1−

[
(1−e−λx)α

1−(1−p)[1−(1−e−λx)α]

]a}1−b
[(1 − e−λx)α]1−a and h(x) = g(x)[1 − (1 − p)(1 − (1 − e−λx)α)]a

for x > 0. The random variable X has pdf (15) if and only if the function η defined in Theorem
6.1 has the form

η(x) =
1

2

{
1 + [1− (1− p)(1− (1− e−λx)α)]−a

}
, x > 0.

Proof: Let X have density (15), then

(1− F (x)E[g(X)|X ≥ x] =
b(1− p)

p

{
[1− (1− p)(1− (1− e−λx)α)]−a − 1

}
, x > 0,

and

(1− F (x)E[h(X)|X ≥ x] =
b(1− p)

2p

{
[1− (1− p)(1− (1− e−λx)α)]−2a − 1

}
, x > 0.

Then

η(x) =
1

2

{
1 + [1− (1− p)(1− (1− e−λx)α)]a

[1− (1− p)(1− (1− e−λx)α)]a

}
,

and finally

η(x)g(x)− h(x) =
1

2
g(x)

{
1− [1− (1− p)(1− (1− e−λx)α)]−a

}
< 0, x > 0.
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Conversely, if η(x) = 1
2

{
1 + [1− (1− p)(1− (1− e−λx)α)]−a

}
, then

s′(x) =
η′(x)g(x)

η(x)g(x)− h(x)

=
− a(1− p)αλe−λx(1− e−λx)α−1[1− (1− p)(1− (1− e−λx)α)]−(a+1)

1− [1− (1− p)(1− (1− e−λx)α)]−a
, x > 0

and
s(x) = − log

{
1− [1− (1− p)(1− (1− e−λx)α)]−a

}
, x > 0.

So, in view of Theorem 6.1, X has density function (15).
Corollary 6.1: Let X : Ω → (0,∞) be a continuous random variable and let h be as in

Proposition 1. Then pdf of X is (15) if and only if there exist a function g and η defined in
Theorem 6.1 satisfying the differential equation

η′(x)h(x)

η(x)h(x)− g(x)
=
− a(1− p)αλe−λx(1− e−λx)α−1[1− (1− p)(1− (1− e−λx)α)]−(a+1)

1− [1− (1− p)(1− (1− e−λx)α)]−a
, x > 0.

The general solution of the differential equation in Corollary 6.1 is

η(x) =

∫
a(1− p)αλe−λx(1− e−λx)α−1[1− (1− p)(1− (1− e−λx)α)]−(a+1)[g(x)]−(a+1)h(x)dx+D

1− [1− (1− p)(1− (1− e−λx)α)]−a
,

where D is a constant. One set of appropriate functions is given in Proposition 1 with D = 1
2 .

However, it should be also noted that there are other triplets (h, g, η) satisfying the conditions of
Theorem 6.1.

6.2. Characterization based on single function of the random variable

In this subsection, we obtain a characterization of Kw-DML-E distribution using the following
theorem of Hamedani et al. (2014).

Theorem 6.2 : 1− F (x) = [aφ(x) + b]c if and only if

E[φ(X)|X ≥ x] =
1

c+ 1

[
cφ(x)− b

a

]
, α < x < β,

where a 6= 0, b, c > 0 are finite constants.

Corollary 6.2: By taking a = −1, b = 1, c = b, φ(x) =
[

(1−e−λx)α
1−(1−p)(1−(1−e−λx)α)

]a
and (α, β) =

(0,∞) in Theorem 6.2, we get

F (x) = 1−
{

1−
[

(1− e−λx)α

1− (1− p)(1− (1− e−λx)α)

]a}b
, x > 0.

7. Maximum likelihood estimation

Several approaches for parameter estimation have been proposed in the literature, but maxi-
mum likelihood method is the most commonly employed. We consider estimation of the unknown
parameters of Kw-DML-E distribution by the method of maximum likelihood. Let x1, x2, . . . , xn
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be observed values from the Kw-DML-E distribution with parameters a, b, α, p and λ. The log-
likelihood function for (a, b, α, p, λ) is given by

log L = n log(a b α p λ)−
n∑

i=1

λxi + (aα− 1)
n∑

i=1

log(1− e−λxi) +

(b− 1)
n∑

i=1

{
1−

[
1− e−λxi

1− (1− p)(1− (1− e−λxi)α)

]a}
−

(a+ 1)
n∑

i=1

log[1− (1− p)(1− (1− e−λxi)α)].

The derivatives of the log-likelihood function with respect to the parameters a, b, α, p and λ are
given by respectively,

∂ log L

∂a
=

n

a
+ α

n∑

i=1

log(1− e−λxi)− (b− 1)

n∑

i=1

(
B

A

)a [ log(B/A)

1− (B/A)a

]
−

n∑

i=1

log(A), (25)

∂ log L

∂b
=

n

b
+

n∑

i=1

log

[
1−

(
B

A

)a]
, (26)

∂ log L

∂α
=

n

α
+ a

n∑

i=1

log(1− e−λxi)− (b− 1)

n∑

i=1

[
Ba

Aa+1

]
p log(1− e−λxi)

[1− (B/A)a]
−

n∑

i=1

(a+ 1)(1− p)B log(1− e−λxi)
A

(27)

∂ log L

∂p
=

n

p
+ a(b− 1)

n∑

i=1

B(1−B)

A2[1− (B/A)a]
−

n∑

i=1

(a+ 1)(1−B)

A
, (28)

∂ log L

∂λ
=

n

λ
−

n∑

i=1

xi + (aα− 1)
n∑

i=1

xie
−λxi

1− e−λxi − a(b− 1)αp
n∑

i=1

xie
−λxi(1− e−λxi)α−1
Aa+1[1− (B/A)a]

−

(a+ 1)α(1− p)
n∑

i=1

xie
−λxi(1− e−λxi)α−1

A
, (29)

where A = 1− (1− p)[1− (1− e−λxi)α] and B = (1− e−λxi)α.
The maximum likelihood estimates of (a, b, α, p, λ), say (â, b̂, α̂, p̂, λ̂) are the simultaneous solutions
of the equation ∂ log L

∂a = 0, ∂ log L
∂b = 0, ∂ log L

∂α = 0, ∂ log L
∂p = 0 and ∂ log L

∂λ = 0. Maximization of
the likelihood function can be performed by using nlm or optim in R statistical package.

Now, we study the existence and uniqueness of the maximum likelihood estimates when the
other parameters are known (given).
Theorem 7.1: Let f1(a; b, α, p, λ, x) denote the function on the right-hand-side (RHS) of equa-
tion (25), where b, α, p, λ are the true value of the parameters. Then there exists a solution for
f1(a; b, α, p, λ, x)=0, for

∑n
i=1 log(A) > α

∑n
i=1 log(1− e−λxi) and is unique when b < 1.

Proof: We have

f1(a; b, α, p, λ, x) =
n

a
+ α

n∑

i=1

log(1− e−λxi)− (b− 1)

n∑

i=1

(
B

A

)a [ log(B/A)

1− (B/A)a

]
−

n∑

i=1

log(A).
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Then

lim
a→0

f1(a; b, α, p, λ, x) =∞+ α
n∑

i=1

log(1− e−λxi)− 0−
n∑

i=1

log(A) =∞

Also

lim
a→∞

f1(a; b, α, p, λ, x) = 0 + α

n∑

i=1

log(1− e−λxi)− 0−
n∑

i=1

log(A) < 0

if and only if
∑n

i=1 log(A) > α
∑n

i=1 log(1 − e−λxi). Hence there exist at least one solution for
a ∈ (0,∞) when

∑n
i=1 log(A) > α

∑n
i=1 log(1− e−λxi).

To establish uniqueness part, the first derivative of f1(a; b, α, p, λ, x) is

∂f1(a; b, α, p, λ, x)

∂a
= −(b− 1)

(
B

A

)a [ log(B/A)2

1− (B/A)a

]
− (b− 1)

(
B

A

)2a [ log(B/A)2

[1− (B/A)a]2

]

< 0

when b < 1. So there exist a solution for f1(a; b, α, p, λ, x) = 0 when
∑n

i=1 log(A) > α
∑n

i=1 log(1−
e−λxi) and the root â is unique when b < 1.

Theorem 7.2: Let f2(b; a, α, p, λ, x) denote the function on RHS of equation (26), where
a, α, p, λ are the true value of the parameters. Then there exist a unique solution for f2(b; a, α, p, λ, x) =
0 for b ∈ (0,∞).

Proof: We have

f2(b; a, α, p, λ, x) =
n

b
+

n∑

i=1

log

[
1−

(
B

A

)a]
.

Now

lim
b→0

f2(b; a, α, p, λ, x) =∞+
n∑

i=1

log

[
1−

(
B

A

)a]
=∞.

On the other hand

lim
b→∞

f2(b; a, α, p, λ, x) = 0 +

n∑

i=1

log

[
1−

(
B

A

)a]
< 0.

Therefore, there exist at least one root say b̂ ∈ (0,∞) such that f2(b̂; a, α, p, λ, x) = 0. To show the
uniqueness part, the first derivative of f2(b; a, α, p, λ, x) is

∂f2(b; a, α, p, λ, x)

∂b
= − n

b2

< 0.

Hence, there exist a solution for f2(b; a, α, p, λ, x) = 0 and the root, b̂ is unique.
Theorem 7.3: Let f3(α; a, b, p, λ, x) denote the function on RHS of equation (27), where

a, b, p, λ are the true value of the parameters. Then there exist a solution for f3(α; a, b, p, λ, x) = 0
for α ∈ (0,∞).

Proof: We have

f3(α; a, b, p, λ, x) =
n

α
+ a

n∑

i=1

log(1− e−λxi)− (b− 1)

n∑

i=1

[
Ba

Aa+1

]
p log(1− e−λxi)

[1− (B/A)a]
−

n∑

i=1

(a+ 1)(1− p)B log(1− e−λxi)
A

.
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Then

lim
α→0

f3(α; a, b, p, λ, x) =∞+a

n∑

i=1

log(1−e−λxi)−(b−1)

n∑

i=1

p log(1−e−λxi)−(a+1)(1−p) log(1−e−λxi) =∞.

Also

lim
α→∞

f3(α; a, b, p, λ, x) = 0 + a
n∑

i=1

log(1− e−λxi)− 0− 0− 0 < 0.

Therefore, there exist at least one root say α̂ ∈ (0,∞) such that f3(α̂; a, b, p, λ, x) = 0.
Theorem 7.4: Let f4(p; a, b, α, λ, x) denote the function on RHS of equation (28), where

a, b, α, λ are the true value of the parameters. Then there exist a solution for f4(p; a, b, α, λ, x) = 0

when n+ a(b− 1)
∑n

i=1
B(1−B)
1−Ba <

∑n
i=1(a+ 1)(1−B), p ∈ (0, 1).

Proof: We have

f4(p; a, b, α, λ, x) =
n

p
+ a(b− 1)

n∑

i=1

B(1−B)

A2[1− (B/A)a]
−

n∑

i=1

(a+ 1)(1−B)

A
.

Then

lim
p→0

f4(p; a, b, α, λ, x) =∞+∞−
n∑

i=1

(a+ 1)(1−B)

(1− e−λx)α
=∞.

On the other hand

lim
p→1

f4(p; a, b, α, λ, x) = n+ a(b− 1)
n∑

i=1

B(1−B)

1−Ba
−

n∑

i=1

(a+ 1)(1−B) < 0

if and only if n+ a(b− 1)
∑n

i=1
B(1−B)
1−Ba <

∑n
i=1(a+ 1)(1−B).

Hence, there exist a solution for f4(p; a, b, α, λ, x) = 0 when n+ a(b− 1)
∑n

i=1
B(1−B)
1−Ba <

∑n
i=1(a+

1)(1−B).
Theorem 7.5: Let f5(λ; a, b, α, p, x) denote the function on RHS of equation (29), where

a, b, α, p are the true value of the parameters. Then there exist a solution for f5(λ; a, b, α, p, x) = 0,
for λ ∈ (0,∞).

Proof: We have

f5(λ; a, b, α, p, x) =
n

λ
−

n∑

i=1

xi + (aα− 1)

n∑

i=1

xie
−λxi

1− e−λxi − a(b− 1)αp

n∑

i=1

xie
−λxi(1− e−λxi)α−1
Aa+1[1− (B/A)a]

−

(a+ 1)α(1− p)
n∑

i=1

xie
−λxi(1− e−λxi)α−1

A
.

Then

lim
λ→0

f5(λ; a, b, α, p, x) =∞−
n∑

i=1

xi +∞− 0− 0 =∞.

Also

lim
λ→∞

f5(λ; a, b, α, p, x) = 0−
n∑

i=1

xi + 0− 0− 0 < 0.
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Therefore there exist at least one root say λ̂ ∈ (0,∞) such that f5(λ; a, b, α, p, x) = 0.
The normal approximation of the maximum likelihood estimates of the parameters can be

adopted for constructing approximate confidence intervals and for testing hypotheses on the pa-
rameters (a, b, α, p, λ). Under conditions that are fulfilled for the parameters in the interior of the
parameter space and applying the usual large sample approximation, it can be shown that

√
n(θ−θ̂)

can be approximated by a multivariate normal distribution with zero means and variance-covariance
matrix K−1(θ), where K(θ) is the unit expected information matrix.
As n tends to infinity, we have the asymptotic result

K(θ) = lim
n→∞

1

n
I(θ)

where I(θ) is the observed Fisher information matrix. Since K(θ) involves the unknown parameter
of θ, we may replace it with the MLE θ̂. Thus, the average matrix estimated at θ̂, say 1

nI(θ), can
be used to estimate K(θ). The estimated multivariate normal distribution can thus be used to
construct approximate confidence intervals for the unknown parameters and for the hazard rate
and survival function.

7.1. Simulation

In this section, we asses the performance of the Kw-DML-E(a, b, α, p, λ) distribution by con-
ducting simulation for different sample sizes and parameter values. For analytical tractability,
let λ = 1.0 in (20) and we use (20) to generate random samples from the Kw-DML-E distribu-
tion with parameters a, b, α and p. The different sample sizes considered in the simulation are
n = 50, 100, 200 and 500. We used nlm package in R software to find the estimates. We repeated
the process 1000 times and report the average estimates and associated mean squared errors listed
in Table 3.
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p = 0.5 p = 0.8

n â(ŜE(â)) b̂(ŜE(b̂)) α̂(ŜE(α̂)) â(ŜE(â)) b̂(ŜE(b̂)) α̂(ŜE(α̂))

a=5.0 b=2.0 α=1.5 a=5.0 b=0.5 α=1.5

50 4.872(0.2667) 1.314(6.4290) 1.73(0.0130) 4.773(0.0518) 0.573(1.0565) 1.84(0.0285)
100 5.228(0.1650) 2.607(1.1612) 1.64(0.0070) 4.784(0.0386) 0.580(0.8413) 1.44(0.0150)
200 4.769(0.0926) 1.503(1.2006) 1.40(0.0034) 5.088(0.0025) 0.432(0.1847) 1.56(0.0078)
500 5.235(0.0516) 2.224(0.7637) 1.43(0.0007) 5.009(0.0001) 0.506(0.0705) 1.50(0.0045)

a=5.0 b=2.0 α=0.5 a=5.0 b=0.5 α=0.5

50 5.991(0.1086) 1.831(2.3542) 0.77(0.2345) 4.778(0.6018) 0.573(1.0565) 0.46(0.4050)
100 4.834(0.0016) 1.776(1.4201) 0.35(0.1704) 4.784(0.5186) 0.513(0.8413) 0.57(0.3160)
200 5.639(0.0284) 1.813(0.9373) 0.45(0.1025) 5.088(0.3256) 0.480(0.8124) 0.54(0.1098)
500 5.414(0.0016) 1.913(0.5324) 0.53(0.0804) 5.009(0.0984) 0.506(0.5630) 0.48(0.0931)

a=0.5 b=2.0 α=1.5 a=0.5 b=0.5 α=1.5

50 0.626(0.3036) 2.191(0.6450) 1.40(0.1060) 0.482(1.317) 0.538(0.4186) 1.55(0.5070)
100 0.566(0.1095) 1.936(0.1916) 1.53(0.0840) 0.525(0.9801) 0.498(0.3290) 1.44(0.3018)
200 0.443(0.0854) 2.264(0.0114) 1.45(0.0651) 0.512(0.8456) 0.452(0.1853) 1.57(0.0807)
500 0.506(0.0202) 2.185(0.0029) 1.56(0.0421) 0.486(0.5412) 0.548(0.1290) 1.49(0.0402)

a=0.5 b=2.0 α=0.5 a=0.5 b=0.5 α=0.5

50 0.528(0.0131) 2.375(0.5540) 0.42(0.8080) 0.483(0.7020) 0.4814(0.1041) 0.75(1.0125)
100 0.534(0.0026) 1.761(0.1432) 0.49(0.7077) 0.515(0.6090) 0.538(0.0913) 0.45(1.0027)
200 0.487(0.0025) 1.329(0.0648) 0.57(0.4024) 0.537(0.4756) 0.514(0.0601) 0.66(0.9012)
500 0.512(0.0004) 2.378(0.0154) 0.55(0.1546) 0.540(0.2351) 0.521(0.0402) 0.45(0.7002)

Table 3: Simulation results for some different values of the parameters a, b, α and p when λ = 1.
From Table 3, we can see that as the sample size increases, the estimated values are close to the
assumed values and the mean squared error decreases, which indicates the consistency property of
the MLEs.

8. Application to real data

Here we present an application to a real data set for illustrating the potentiality of the new
distribution. The data set is originally reported by Bader and Priest (1982) which represents the
strength measured in GPa for single carbon fibers and impregnated at gauge lengths of 1, 10, 20
and 50 mm. Here, we consider the data set of single fibers of 20 mm in gauge with a sample of
size 63. The data set is:

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518 2.522
2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928
2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243 3.264 3.272
3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871
3.886 3.971 4.024 4.027 4.225 4.395 5.020.

Descriptive statistics of the data is presented in Table 4.

Min Median Mean Max SD Skewness Kurtosis

1.901 2.996 3.059 5.020 0.621 0.633 3.286
Table 4: Descriptive statistics of carbon fibers data.
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The distribution of the data is positively skewed and leptokurtic. We compare the fit of the
Kw-DML-E distribution with the following continuous life time distributions:

1. Kumaraswamy Exponential (Kw-E) distribution having the pdf

f(x) = abλe−λx(1− e−λx)a−1(1− (1− e−λx)a)b−1; a, b, λ > 0.

2. Kumaraswamy Marshall-Olkin Exponential (Kw-MO-E) distribution having the pdf

f(x) =
abλe−λx(1− p)(1− e−λx)a−1

(1− pe−λx)a+1

{
1−

[
1− e−λx
1− pe−λx

]a}b−1
; a, b, p, λ > 0.

3. Marshall-Olkin Kumaraswamy Exponential (MO-Kw-E) distribution having the pdf

f(x) =
abpλe−λx(1− e−λx)a−1[1− (1− e−λx)a]b−1

{1− (1− p)[1− (1− e−λx)a]b}2 ; a, b, p, λ > 0.

The values of the log-likelihood (-log L) and AIC (Akaike Information Criterion) are calculated
for the eight distributions in order to verify which distribution fits better to the data. The better
distribution corresponds to smaller -log L and AIC. Here, AIC = −2 logL + 2k where L is
the likelihood function evaluated at the maximum likelihood estimates and k is the number of
parameters.
We apply the Crammer-von Mises(W ∗) and Anderson-Darling (A∗) statistic for formal goodness-
of-fit to verify which distribution fits better to this data. In general, the smaller the values of
the statistics W ∗ and A∗, shows better the fit to the data. Let G(x; θ) be the cdf, where the
form of G is known but θ (a 4-dimensional parameter vector, say) is unknown. We calculate the
statistics W ∗ and A∗ as follows:(i) Compute ψi = G(xi; θ̂), where the x′is are in ascending order;
(ii) Compute xi = φ−1(ψi), where φ(.) is the normal cdf and φ−1(.) its inverse.; (iii) Compute
ui = φ{(xi − x̄)/sx}, where ȳ = n−1

∑n
i=1 xi and s2x = (n− 1)−1

∑n
i=1(xi − (̄x))2; (iv) Calculate

W 2 =

n∑

i=1

{
ui −

(2i− 1)

2n

}2

+
1

12n

and

A2 = −n− 1

n

n∑

i=1

{(2i− 1) log (ui) + (2n+ 1− 2i) log (1− ui)};

(v) Modify W 2 into W ∗ = W 2(1 + 0.5/n) and A2 into A∗ = A2(1 + 0.75/n+ 2.25/n2). For further
details, see Chen and Balakrishnan (1995).
The values of estimates,− log L, AIC,W ∗ and A∗ for all models are listed in Table 5.
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Model Parameters − logL AIC W ∗ A∗ K − S p-value

Kw-E b̂ = 1.523 56.3546 118.7092 0.0651 0.3410 0.0815 0.7962

λ̂ = 1.540

â = 69.755

Kw-MO-E b̂ = 1.497 56.3624 120.7248 0.0658 0.3433 0.0828 0.7803
p̂ = 0.474

λ̂ = 1.560

â = 5181.418

MO-Kw-E b̂ = 0.585 56.2235 120.4470 0.0648 0.3425 0.0813 0.7985
p̂ = 0.488

λ̂ = 3.830

â = 47.785

b̂ = 2.833
Kw-DML-E α̂ = 0.5711 54.2107 118.4214 0.0610 0.3218 0.0782 0.8348

p̂ = 0.069

λ̂ = 0.919

Table 5: Parameter estimates and goodness-of-fit statistics for various models fitted to carbon
fibers data.

From the Table 5, we can see that, Kw-DML-E distribution has smallest − logL, AIC, W ∗,
A∗ and K − S values. Also Kw-DML-E distribution has highest p-value. Hence, the new model,
that is Kw-DML-E distribution, yields a better fit than the other models, for this data set.

To test the null hypothesis H0 : Kw-DML-E versus H1 : Kw-MO-E or equivalently H0 : α = 1
versus H1 : α 6= 1, we use likelihood ratio test statistic whose value is 2.1517(p-value =0.1424).
As a result, the null model Kw-MO-E is rejected in favor of alternative model Kw-DML-E at any
level > 0.1424.

The fitted density and the empirical cdf plot of the Kw-DML-E distribution model are presented
in Figure 4. The figure indicates a satisfactory fit of the Kw-DML-E distribution.

9. Conclusion

In this paper, we have proposed a new class of continuous distributions, namely Kumaraswamy
discrete Linnik G family of distributions. The new class of distributions contain Kumaraswamy dis-
cret Mittag-Leffler G family of distributions, Kumaraswamy truncated negative binomial G family
of distributions, Kumaraswamy Marshall-Olkin G family of distributions, Kumaraswamy G family
of distributions, families of distributions generated through truncated discrete Linnik distribution,
families of distributions generated through truncated discrete Miitag-Leffler distribution, families
of distributions generated through truncated negative binomial distribution, Marshall-Olkin family
of distributions, etc. In particular, we study a sub model of Kumaraswamy discrete Mittag-Leffler
G distribution, namely, Kumaraswamy discrete Mittag-Leffler exponential (Kw-DML-E) distribu-
tion in detail. We study the shape properties of the density function and hazard function. The
explicit expression for the moments, generating functions and quantiles are derived. The stochas-
tic ordering property studied. Two characterizations of Kw-DML-E distribution is obtained. The
maximum likelihood method is employed for estimating the model parameters and its existence
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Figure 4: Plots of the estimated pdf and cdf of the Kw-DML-E model for the carbon fibers data.

and uniqueness are proved. Simulation studies are also carried out. The obtained results are vali-
dated using a real data set and it is shown that the Kw-DML-E distribution provides a better fit
than Kumaraswamy exponential, Kumaraswamy Marshall-Olkin exponential and Marshall Olkin
Kumaraswamy exponential distribution. Hence, the proposed model will attract wider applications
in several areas such as engineering, hydrology, economics, survival and lifetime data among others.
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Abstract
Following the methodology in the studies of Srivenkataramana (1980), Bandyopadhyaya (1980), Ray and Sahai
(1980), Singh and Espejo (2003) and Chami, Singh and Thomas (2012) we have suggested a dual to a two-
parameter ratio-product-ratio estimator for a finite population mean using simple random sampling without
replacement (SRSWOR) scheme. Expressions for bias and mean squared error of the suggested estimator
are derived upto the first degree of approximation. Regions of preference have been derived under which the
proposed family of estimators is better than the sample mean, ratio, dual to ratio, product and dual to product
estimators. We carry out an empirical study demonstrating that the suggested estimator out performs the
traditional estimators.

Keywords: Study Variate, Auxiliary Variable, Bias, Mean Squared error, Empirical Study.

1 Introduction
In many survey situations, information on auxiliary variable is always available along with the study
variable. It is well known fact that the use of auxiliary information at the estimation stage provides
efficient estimators for population mean of the study variable. If the correlation between the study and
auxiliary variables is positive (high), the ratio method of estimation is quite effective. On the other
hand if this correlation is negative (high), the product method of estimation is employed. Further if the
relation between the study variable y and the auxiliary variable x is a straight line passing through the
neighbourhood of the origin and the variance of y about this line is proportional to the auxiliary variable
x, the ratio estimator is as good as regression estimator. There are number of situations in which the
regression line does not pass through the neighbourhood of the origin. In such cases ratio estimator
does not perform equally well as that of regression estimator. Keeping this fact in view various authors
including Srivastava (1967,1971), Walsh (1970), Reddy (1973), Gupta (1978), Sahai (1979), Srivastava
(1980), Adhvaryu and Gupta (1983), Kothawala and Gupta (1988), Gupta and Kothawala (1990), Singh
and Nigam (2020) and others have made their efforts to formulate ratio and product estimators in order to
provide better alternatives. We further note that in sampling theory the prior knowledge about C = ρCy

Cx

has played very important role in providing these better alternatives for population mean where ’ ρ ’ is the
correlation coefficient between the study variable y and the auxiliary variable x, Cy and Cx are coefficients
of variation of y and x respectively. Use of knowledge of ’ C ’ was first introduced by Gupta (1978)

© 2023 Author(s). (https://www.thegsa.in/).
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while discussing the higher degree ratio and product estimators. Adhvaryu and Gupta (1983) suggested
its use in composite estimator where weights depend on ’ C ’ and have determined the range in which this
value differs from optimum still the estimator remains better conventional ratio estimator. Further their
results have been extended for the composite product estimator. Kothawala and Gupta in a series papers
have again use this parameter ’ C′ = ρCy

Cx
in various composite estimators for higher order approximation

and have given exclusive tables in Kothawala (1989) thesis. A new alternative estimator for population
mean of the study variable y using information on auxiliary variable x has been proposed along with its
properties.

Consider a finite population Ω = (Ω1,Ω2,...,ΩN) comprising of N identifiable and distinct units.
Let (y, x) be the study and auxiliary variates respectively taking values (yi, xi) , i = 1, 2, . . . , N . Let(
Ȳ = 1

N

∑N
i=1 yi, X̄ = 1

N

∑N
i=1 xi

)
be the population means of (y,x) respectively. For estimating the

population mean Ȳ of y, a simple random sample (SRS) of size n is drawn without replacement
(WOR) scheme. Let

(
ȳ = 1

n

∑n
i=1 yi, x̄ = 1

n

∑n
i=1 xi

)
be the sample means of (y,x) respectively and

unbiased estimators of the population means (Ȳ , X̄). Further let s2
y = 1

(n−1)
∑n

i=1 (yi − ȳ)2 and
s2

x = 1
(n−1)

∑n
i=1 (xi − x̄)2 be the unbiased estimators of population variances / mean squares S2

y =
1

(N−1)
∑N

i=1

(
yi − Ȳ

)2
and S2

x = 1
(N−1)

∑N
i=1

(
xi − X̄

)2
respectively. Furthermore, we define the

coefficient of variation of y and x as Cy = Sy

Ȳ
and Cx = Sx

X̄
and C = ρCy

Cx
, where ρ = Syx/ (Sy, Sx) is the

correlation coefficient between y and x; and Syx = 1
(N−1)

∑N
i=1

(
yi − Ȳ

) (
xi − X̄

)
. For estimating the

population mean Ȳ , the conventional ratio and product estimators are respectively defined by

ȳR = ȳ

(
X̄

x̄

)
(ratio estimator), (1.1)

ȳp = ȳ
(

x̄

X̄

)
(product estimator). (1.2)

To the first degree of approximation, the mean squared errors (MSEs) of ȳR and ȳP are respectively
given by

MSE (ȳR) = (1 − f)
n

Ȳ 2
[
C2

y + C2
x(1 − 2C)

]
(1.3)

MSE (ȳP ) = (1 − f)
n

Ȳ 2
[
C2

y + C2
x(1 + 2C)

]
, (1.4)

where f = n
N

is the sampling fraction. The variance/MSE of the sample mean ȳ under SRSWOR
scheme is given by

MSE(ȳ) = Var(ȳ) = (1 − f)
n

S2
y = (1 − f)

n
Ȳ 2C2

y . (1.5)

Comparing the mean squared errors of ȳ, ȳR and ȳP , Murthy (1964) and Sahai and Ray (1980) have
proved that the ratio estimator ȳR, sample mean ȳ, and product estimator ȳP are more efficient when
C > 1

2 , −1
2 ≤ C ≤ 1

2 and C < −1
2 , respectively. Srivenkataramana (1980) and Bandyopadhyay (1980)

suggested the dual to ratio and product estimators for Ȳ respectively as

ȳRd = ȳ
x̄∗

X̄
, (1.6)

ȳP d = ȳ
X̄

x̄∗ , (1.7)
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where x̄∗ = (NX̄−nx̄)
(N−n) = (1 + g)X̄ − gx̄, with g = n

N−n
= f

(1−f) .
To the first degree of approximation, the MSEs of ȳRd and ȳP d are respectively given by

MSE (ȳRd) = (1 − f)
n

Ȳ 2
[
C2

y + gC2
x(g − 2C)

]
, (1.8)

MSE (ȳP d) = (1 − f)
n

Ȳ 2
[
C2

y + gC2
x(g + 2C)

]
. (1.9)

The dual to ratio estimator ȳRd is more efficient than ȳ if

C >
g

2 (1.10)

while dual to product estimator ȳP d is better than ȳ if

C < −g

2 . (1.11)

Thus the sample mean ȳ is to be preferred over ȳRd and ȳP d if

−g

2 ≤ C ≤ g

2 . (1.12)

In this paper we have suggested a dual to a ratio -product-ratio estimator using auxiliary information
for estimating population mean. Properties of suggested estimator are studied under large sample
approximation. We have obtained the conditions under which the suggested estimator has smaller mean
squared error than the sample mean, dual to ratio and product estimators and the conventional ratio and
product estimators.

2 The Suggested dual to a two parameter Ratio-Product-Ratio
Estimators

For estimating the population mean ȳ of the main variable y, using the transformation x∗
i = (1 + g)X̄ −

gxi, i = 1, 2, . . . , N .

We propose a two parameter dual to a ratio-product-estimator for population mean Ȳ of y as
ȳ∗

(η,δ) = η
[

δx̄∗+(1−δ)X̄
(1−δ)x̄∗+δX̄

]
ȳ + (1 − η)

[
(1−δ)x̄∗+δX̄

δx̄∗+(1−δ)X̄

]
ȳ (2.1)

where (η, δ) are real constants,

x̄∗ = {(1 + g)X̄ − gx̄}
such that
E (x̄∗) = X̄, where g = n

N−n
.

Aim of this paper is to derive values for the constants (η, δ) such that the bias and/or the MSE of
ȳ∗

(η,δ) is minimal.
It is to be mentioned that ȳ∗

(η,δ) = ȳ∗
(1−η,1−δ), that is, the estimator ȳ∗

(η,δ) is invariant under a point
reflection through the point (η, δ) =

(
1
2 , 1

2

)
. In the point of symmetry (η, δ) =

(
1
2 , 1

2

)
, the estimator

boils down to the sample mean ȳ; that is, we have ȳ∗
( 1

2 , 1
2) = ȳ. Indeed, on the whole line δ = 1

2 our
suggested estimator boils down to the sample mean estimator, that is, ȳ∗

(η, 1
2) = ȳ. Further, we note

that the estimator ȳ(η,δ) reduces to dual to ratio estimator ȳRd = ȳ
(

x̄∗

X̄

)
for (η, δ) = (1, 1) while for
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(η, δ) = (0, 1) it reduces to dual to product estimator ȳP d = ȳ
(

X̄
x̄∗

)
. Its simplicity (essentially just using

convex combinations and/or a dual to ratio estimator of convex combinations) and that all the three
known estimators (ȳ, ȳRd, ȳP d) can be derived from it by selecting appropriate parameters and the reasons
why we study the estimator in (2.1) and compare it to the estimators (ȳ, ȳRd, ȳP d, ȳR, ȳP ). To obtain the
bias and MSE of the proposed estimator ȳ∗

(η,δ), we write

ȳ = Ȳ (1 + e0) , x̄ = X̄ (1 + e1)

such that
E (e0) = E (e1) = 0 and E (e2

0) = (1−f)
n

C2
y , E (e2

1) = (1−f)
n

C2
x,

E (e0e1) = (1−f)
n

ρCyCx,

Expressing ȳ∗
(η,δ) in terms of (e0, e1) we have

ȳ∗
(η,δ) = Ȳ (1 + e0)

[
η (1−gδe1)

{1−g(1−δ)e1} + (1 − η){1−g(1−δ)e1}
(1−gδe1)

]
. (2.2)

We assume that
|e1| < min

{{
1

|δg| ,
1

|(1−δ)g|

}}
,

and therefore we can expand (1 − δge1)−1 and (1 − (1 − δ)ge1)−1 as a series in powers of e1. We get
up to O (e3

1)
ȳ∗

(η,δ) = Ȳ (1 + e0) [1 − g(1 − 2η)(1 − 2δ)e1 + g2(1 − 2δ)(η − δ)e2
1 + 0 (e3

1)]. (2.3)

It is assumed that the sample is large enough to make |e1| so small that contributions from powers of
e1 of degree higher than two are negligible. So neglecting terms of e′s having power greater two, we have

(
ȳ∗

(η,δ) − Ȳ
) ∼= Ȳ

[
e0 − g(1 − 2η)(1 − 2δ)e1 − g(1 − 2η)(1 − 2δ)e0e1 + g2(1 − 2δ)(η − δ)e2

1

]
. (2.4)

Taking expectations on both sides of (2.4) and inserting C = ρ
(

Cy

Cx

)
, we obtain the bias of ȳ∗

(η,δ) to
order O (n−1) as

B
(
ȳ∗

(η,δ)

)
= E

(
ȳ∗

(η,δ) − Ȳ
)

= (1 − f)
n

(1 − 2δ)gȲ C2
x[(η − δ)g − (1 − 2η)C]. (2.5)

Equating (2.5) to zero, we obtain

δ = 1
2 or δ = (2ηC − C + ηg)

g
(2.6)

The suggested estimator ȳ∗
(η,δ), inserted with the values of δ from (2.6), becomes an (approximately)

unbiased estimator for the population mean Ȳ .

Mean Squared Error of ȳ∗
(η,δ)

Squaring both sides of (2.4) and neglecting terms of e’s having power greater than two, we have

{
ȳ∗

(η,δ) − Ȳ
}2

= Ȳ 2
[
e2

0 − 2g(1 − 2η)(1 − 2δ)e0e1 + g2(1 − 2η)2(1 − 2δ)2e2
1

]
(2.7)
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Taking expectation on both sides of (2.7) we get the MSE of ȳ∗
(η,δ) to terms of order 0 (n−1) as

MSE
(
ȳ∗

(η,δ)

)
= (1 − f)

n
Ȳ 2

[
C2

y + g(1 − 2η)(1 − 2δ)C2
x{g(1 − 2η)(1 − 2δ) − 2C}

]
(2.8)

which is minimum when

(1 − 2η)(1 − 2δ) = C

g
. (2.9)

Putting (2.9) in (2.8) we get the minimum MSE of ȳ∗
(η,δ) as

MSEmin
(
ȳ∗

(η,δ)

)
= (1 − f)

n
Ȳ 2

(
C2

y − C2C2
x

)
,

= (1 − f)
n

S2
y

(
1 − ρ2

)
= MSE

(
ȳ

∗(0)
(η,δ)

)
(2.10)

which is equal to the approximate MSE of the regression estimator
ȳlr = ȳ + β̂(X̄ − x̄),
where β̂ = syx

s2
x

is the estimate of the population regression coefficient β = Syx

S2
x

of y on x,

syx = 1
(n − 1)

n∑

i=1
(yi − ȳ) (xi − x̄) and s2

x = 1
(n − 1)

n∑

i=1
(xi − x̄)2 .

Now we state the following theorem:

Theorem-2.1- Up to terms of order 0 (n−1),

MSE
(
ȳ∗

(η,δ)

)
≥ (1 − f)

n
S2

y

(
1 − ρ2

)

with equality holding if

(1 − 2η)(1 − 2δ) = C

g

3 Comparison of MSEs and Choice of Parameters
In this section we compare MSE

(
ȳ∗

(η,δ)

)
in (2.8) with MSE of sample mean ȳ, dual to ratio estimator

ȳRd, dual to product estimator ȳP d, ratio estimator ȳR and product estimator ȳP .

Comparing the MSE of Sample Mean ȳ to our Proposed Estimator ȳ∗
(η,δ)

From (1.5) and (2.8) we have

MSE(ȳ) − MSE
(
ȳ∗

(η,δ)

)
= Ȳ 2 (1 − f)

n
C2

xg(1 − 2η)(1 − 2δ)[2C − g(1 − 2η)(1 − 2δ)]

which is non-negative if

(1 − 2η)(1 − 2δ)[2C − g(1 − 2η)(1 − 2δ)] > 0

therefore, either

39



Dual to A Two-Parameter Ratio-Product-Ratio Estimator Singh et al.

(i) η > 1
2 , δ > 1

2 and C > g(1−2η)(1−2δ)
2

(ii) η < 1
2 , δ > 1

2 and C < g(1−2η)(1−2δ)
2

(iii) η > 1
2 , δ < 1

2 and C < g(1−2η)(1−2δ)
2 , or

(iv) η < 1
2 , δ < 1

2 and C > g(1−2η)(1−2δ)
2 .

Combining the conditions (i) to (iv) with the condition −g
2 ≤ C ≤ g

2 , we obtained the following
explicit ranges:

(i) if 0 < C ≤ g
2 and δ > 1

2 , then 1
2 < η < (2δg+2C−g)

2g(2δ−1) ; (from (i))
(ii) if 0 < C ≤ g

2 and δ < 1
2 , then (2δg+2C−g)

2g(2δ−1) < η < 1
2 ; (from (iv))

(iii) if −g
2 ≤ C < 0 and δ > 1

2 , then (2δg+2C−g)
2g(2δ−1) < η < 1

2 ; (from (ii))
(iv) if −g

2 ≤ C < 0 and δ < 1
2 , then 1

2 < η < (2δg+2C−g)
2g(2δ−1) . (from (iii))

It is to be mentioned that the case C = 0 ⇒ ρ = 0, and thus the sample mean estimator ȳ is the
estimator with minimal MSE.

Comparing the MSE of the dual to Ratio Estimator ȳRd to the Suggested
Estimator ȳ∗

(η,δ)

When C > g
2 , the dual to ratio estimator ȳRd is to be used instead of sample mean ȳ or dual to product

estimator ȳP d. Here we are interested in finding the ranges of η and δ, where the suggested estimator
ȳ∗

(η,δ) works better than the dual to ratio estimator ȳRd.
From (1.8) and (2.8) we have

MSE (ȳRd)−MSE
(
ȳ∗

(η,δ)

)
= Ȳ 2 (1 − f)

n
C2

x

[
g2
{
1 − (1 − 2η)2(1 − 2δ)2

}
− 2Cg{1 − (1 − 2η)(1 − 2δ)}

]

which is greater than zero if

g{1 − (1 − 2η)(1 − 2δ)}[{(1 + (1 − 2η)(1 − 2δ)}g − 2C] > 0

that is, if

[2ηδ − η − δ][C − g − g(2ηδ − η − δ)] > 0

therefore,

(i) C

g
− 1 > (2ηδ − η − δ) > 0 or

(ii) C

g
− 1 < (2ηδ − η − δ) < 0.

Hence from (i), where
C
g

> 1 ⇒ C > g, we have the following.
(i) if δ < 1

2 , then (C−g+δg)
g(2δ−1) < η < δ

(2δ−1) ;
(ii) if δ > 1

2 , then δ
(2δ−1) < η < (C−g+δg)

g(2δ−1) .
Further from (ii), where 1

2 < C
g

< 1 ⇒ g
2 < C < g, we obtain the following.

(i) if δ < 1
2 , then δ

(2δ−1) < η < (δg+C−g)
g(2δ−1) ,

(ii) if δ > 1
2 , then (δg+C−g)

g(2δ−1) < η < δ
(2δ−1) .
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Comparing the MSE of dual to Product estimator ȳPd to the Proposed
estimator ȳ∗

(η,δ)

It is shown earlier that, for C < −g
2 ⇒ C

g
< −1

2 , the dual to product estimator ȳP d is preferred to the
sample mean ȳ and dual to the ratio estimator ȳRd.

Taking the difference of (1.9) and (2.8) we have

MSE (ȳP d) − MSE
(
ȳ∗

(η,δ)

)
= Ȳ 2 (1 − f)

n
gC2

x

[
g
{
1 − (1 − 2η)2(1 − 2δ)2

}
+ 2C{1 + (1 − 2η)(1 − 2δ)}

]

which is positive if

{1 + (1 − 2η)(1 − 2δ){[g{1 − (1 − 2η)(1 − 2δ)} + 2C] > 0
i.e. if

(1 + 2ηδ − η − δ)[C − g(2ηδ − η − δ)] > 0
It follows from the above inequality that
(i) C

g
> (2ηδ − η − δ) > −1 (if both the factors in the above inequality are positive)

Or
(ii) C

g
< (2ηδ − η − δ) < −1 (if both the factors in the above inequality are non-negative)

Noting that we are only interested in C
g

< −1
2 , we get from (i)

− 1
2 >

C

g
> (2ηδ − η − δ) > −1

⇒ −1 <
C

g
< −1

2;

and the range for η and δ, where these inequalities hold are explicitly given by the following two cases:
(i) if δ < 1

2 , then (δg+C)
g(2δ−1) < η < (δ−1)

(2δ−1) ,
(ii) if δ > 1

2 , then (δ−1)
(2δ−1) < η < (δg+C)

(2δ−1) .
For any given C∗ = C

g
, we mention that the two regions obtained here are symmetric through

(η, δ) =
(

1
2 , 1

2

)
. We also mention that the parameters (η, δ) which yield an asymptotically optimum

estimator (AOE) [see equation (2.9)], which for a fixed C∗ lie on a hyperbola, are contained in these
regions. In situation (ii), where C∗ < −1 ⇒ C∗ < −1

2 , the following range for η and δ can be obtained:
(i) if δ < 1

2 , then (δ−1)
(2δ−1) < η < (δg+C)

g(2δ−1) .
(ii) if δ > 1

2 , then (δg+C)
g(2δ−1) < η < (δ−1)

(2δ−1) .
We mention that for g = −C, the dual to product estimator ȳpd yields the same minimum MSE as

our suggested estimator ȳ∗
(η,δ) on the hyperbola given by (2.10).

Comparing the MSE of the Ratio Estimator ȳR to the suggested Estimator
ȳ∗

(η,δ)

From (1.3) and (2.8) we have

MSE (ȳR) − MSE
(
ȳ∗

(η,δ)

)
= Ȳ 2 (1 − f)

n
C2

x

[
1 − g2(1 − 2η)2(1 − 2δ)2 − 2C + 2Cg(1 − 2η)(1 − 2δ)

]
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which is non-negative if
[1 − g(1 − 2η)(1 − 2δ)][1 + g(1 − 2η)(1 − 2δ) − 2C] > 0
i.e.if 




either (2C−1)
g

< θ < 1
g

or 1
g

< θ < (2C−1)
g





or equivalently,
min ·

{
1
g
, (2C−1)

g

}
< θ < max ·

{
1
g
, (2C−1)

g

}
(3.1)

where θ = (1 − 2η)(1 − 2δ).
Thus the proposed dual to ratio- product-ratio estimator ȳ∗

(η,δ) is more efficient than the ordinary ratio
estimator ȳR as long as the condition (3.1) is satisfied.

Comparing the MSE of the Product Estimator ȳP to the Suggested Estimator
ȳ∗

(η,δ)

From (1.4) and (2.8) we have
MSE (ȳP ) − MSE

(
ȳ∗

(η,δ)

)
= Ȳ 2 (1−f)

n
C2

x [1 + 2C − g2θ2 + 2Cθg] > 0
if (1 + gθ)[1 − gθ + 2C] > 0
i.e. if

either − 1
g

< θ < (2C+1)
g

or (2C+1)
g

< θ < −1
g





or alternatively,

min ·
{

−1
g

,
(2C + 1)

g

}
< θ < max .

{
−1

g
,
(2C + 1)

g

}
. (3.2)

Thus the suggested estimator ȳ∗
(η,δ) is better than the usual product estimator ȳP as long as the

condition (3.2) holds good.

Comparing the MSE of the Chami et.al. (2012) Two-Parameter Ratio-Product-
Ratio Estimator ȳ(η,δ) to the Proposed Estimator
For estimating the population mean Ȳ of the study variable y, Chami et.al.(2012) suggested the following
two-parameter ratio-product-ratio estimator :

ȳ(η,δ) = η

[
(1 − δ)x̄ + δx̄

δx̄ + (1 − δ)X̄

]
ȳ + (1 − η)

[
δx̄ + (1 − δ)X̄
(1 − δ)x̄ + δX̄

]
ȳ, (3.3)

where (η, δ) are same as defined for the estimator ȳ∗
(η,δ) at (2.1).

To the first degree of approximation, the MSE of ȳ(η,δ) is given by

MSE
(
ȳ(η,δ)

)
= Ȳ 2 (1−f)

n

[
C2

y + θC2
x(θ − 2C)

]
, (3.4)

where θ = (1 − 2η)(1 − 2δ).
From (2.8) and (3.4) we have
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MSE
(
ȳ(η,δ)

)
− MSE

(
ȳ∗

(η,δ)

)
= Ȳ 2 (1−f)

n
C2

xθ [θ − 2C − g2θ + 2gC]

which is non-negative if

θ [θ (1 − g2) − 2C(1 − g)] > 0

i.e. if θ(1 − g)[θ(1 + g) − 2C] > 0

i.e. if θ[θ(1 + g) − 2C] > 0, N > 2n ⇒ f < 1
2 (a condition which is usually met in survey situations)

i.e. if

either θ > 2C
(1+g) , θ > 0

or θ < 2C
(1+g) , θ < 0

}
(3.5)

Thus the proposed dual to a two-parameter ratio-product-ratio estimator ȳ∗
(η,δ) is more efficient than

the estimator ȳ(η,δ) due to Chami et.al. (2012) as long as the condition (3.5) is satisfied.

4 Unbiased Asymptotically Optimum Estimator
From (2.6) and (2.9) the values of the constants η and δ can be derived for which the suggested estimator
ȳ∗

(η,δ) becomes at least up to first order approximation an unbiased AOE. We derive a line with (recall that
on this line the proposed estimator ȳ∗

(η,δ) always boils down to the sample mean estimator ȳ)δ = 1
2 , C

g
= 0.

or a "curve" {η∗ (C∗) , δ∗ (C∗) , C∗} ∈ R3 in the parameter space with

η∗ (C∗) = 1
2

[
1 ±

√
C∗

(2C∗+1)

]

δ∗ (C∗) = 1
2

[
1 ±

√
C∗ (2C∗ + 1)

]


 (4.1)

where C∗ = C
g
.

Substitution of (4.1) in (2.1) yields an unbiased AOE for population mean Ȳ as

ȳ∗ (C∗) = ȳ∗
η∗(C),δ∗(C) =

[
2 (c∗ + 1) X̄2 − 2 (c∗ − 1) x̄∗2 + (2c∗2 − c∗ − 1)

(
X̄ − x̄∗

)2
]

[
4X̄x̄∗ − (2c∗2 − c∗ − 1)

(
X̄ − x̄∗

)2
] . (4.2)

The denominator will vanish if
⌊
4x̄∗X̄ −

(
2C∗2 + C∗ − 1

) (
X̄ − x̄∗

)2
⌋

= 0,

C∗ = 1
4


−1 ±

√√√√√9 − 32x̄∗X̄
(
X̄ − x̄∗

)2


 . (4.3)

It can be easily proved that to the first degree of approximation, the bias and MSE of ȳ∗ (C∗) are
given by

B (ȳ∗ (C∗)) = 0,

MSE (ȳ∗ (C∗)) = (1 − f)
n

S2
y

(
1 − ρ2

)
. (4.4)

Thus the estimator ȳ∗ (C∗) at (4.2) is unbiased AOE.

43



Dual to A Two-Parameter Ratio-Product-Ratio Estimator Singh et al.

5 Outlook
The following estimators:

ȳh1 = ȳ
(

x̄∗

X̄

)h
,

ȳh2 = ȳ X̄

X̄+h(x̄∗−X̄)

ȳh3 = ȳ
{

2 −
(

x̄∗

X̄

)h
}

,

ȳh4 = ȳ
[
h
(

X̄
x̄∗

)
+ (1 − h)

(
x̄∗

X̄

)]
,

ȳh5 = ȳ
{X̄+h(x̄∗−X̄)}

X̄
, etc.

can be considered as a generalization to the dual to ratio and product estimators reported by
Srivenkataramana (1980) and Bandyopadhyaya (1980), where ’ h ’ is a suitably chosen constants.

To the first degree of approximation, the biases and MSEs of the estimators ȳh1 to ȳh5 are respectively
given by

B (ȳh1) = (1 − f)
n

Ȳ hg2C2
x

[
(h − 1)

2 − C∗
]

(5.1)

B (ȳh2) = (1 − f)
n

Ȳ hg2C2
x [h + C∗] , (5.2)

B (ȳh3) = (1 − f)
n

Ȳ hg2C2
x

[
C∗ − (h − 1)

2

]
, (5.3)

B (ȳh4) = (1 − f)
n

Ȳ g2C2
x [h (2C∗ + 1) − C∗] , (5.4)

B (ȳh5) = −(1 − f)
n

Ȳ hg2C2
xC∗, (5.5)

MSE (ȳh1) = (1 − f)
n

Ȳ 2
[
C2

y + hg2C2
x (h − 2C∗)

]
, (5.6)

MSE (ȳh2) = (1 − f)
n

Ȳ 2
[
C2

y + hg2C2
x (h + 2C∗)

]
, (5.7)

MSE (ȳh3) = (1 − f)
n

Ȳ 2
[
C2

y + hg2C2
x (h + 2C∗)

]
, (5.8)

MSE (ȳh4) = (1 − f)
n

Ȳ 2
[
C2

y + g2(2h − 1)C2
x {(2h − 1) + 2C∗}

]
, (5.9)

MSE (ȳh5) = (1 − f)
n

Ȳ 2
[
C2

y + hg2C2
x (h − 2C∗)

]
, (5.10)

The MSEs of estimators ȳh1 to ȳh5 given by (5.6) to (5.10) respectively are minimized for

h = C∗,

h = −C∗,

h = −C∗,

h = (1 − C∗)
2 ,

h = C∗.

Thus the resulting common minimum MSE is given by
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MSE
(
ȳh1(c∗)

)
= MSE

(
ȳh2(−c∗)

)
= MSE

(
ȳh3(−c∗)

)
= MSE

(
ȳh4( 1−c∗

2 )
)

= MSE
(
ȳh5(c∗)

)
= (1 − f)

n
S2

y

(
1 − ρ2

)
(5.11)

Thus, the estimators (ȳh1 to ȳh5 ) and our suggested estimator ȳ
∗(0)
(η,δ) (optimum estimator in the

proposed class of estimators ȳ∗
(η,δ) at (2.1)) at (2.10) are equally efficient up to terms of order 0 (n−1)

having the minimal possible MSE for this type of estimators.

6 Empirical Study
To examine the merits of the suggested class of estimators ȳ∗

(η,δ) relative to ȳ, ȳRd, ȳP d, ȳR and ȳP we
considered the following data sets.

Population -I [Source: Hossain et.al. (2003)]
N = 20, n = 8, Ȳ = 101.1, X̄ = 58.8,

Cy = 0.873, Cx = 0.745, ρ = 0.41.
Population-II [Source: Steel and Torrie (1960 P. 282)]
Y: Log of leaf burn in secs
X : Clorine percentage

N = 30, n = 6, Ȳ = 0.6860, X̄ = 0.8077,

Cy = 0.700123, Cx = 0.7493, ρ = −0.4996.

We have calculated the percent relative efficiency (PRE) of the developed class of estimators ȳ∗
(η,δ)

with respect to ȳ, ȳRd, ȳP d, ȳR and ȳp using the following PRE’s expressions:

PRE
(
ȳ∗

(η,δ), ȳ
)

=
C2

y[
C2

y + g(1 − 2η)(1 − 2δ)C2
x{g(1 − 2η)(1 − 2δ) − 2C}

] × 100 (6.1)

PRE
(
ȳ∗

(η,δ), ȳRd

)
=

[
C2

y + gC2
x(g − 2C)

]

[
C2

y + g(1 − 2η)(1 − 2δ)C2
x{g(1 − 2η)(1 − 2δ) − 2C}

] × 100 (6.2)

PRE
(
ȳ∗

(η,δ), ȳP d

)
=

[
C2

y + gC2
x(g + 2C)

]

[
C2

y + g(1 − 2η)(1 − 2δ)C2
x{g(1 − 2η)(1 − 2δ) − 2C}

] × 100 (6.3)

PRE
(
ȳ∗

(η,δ), ȳR

)
=

[
C2

y + C2
x(1 − 2C)

]

[
C2

y + g(1 − 2η)(1 − 2δ)C2
x{g(1 − 2η)(1 − 2δ) − 2C}

] × 100 (6.4)

PRE
(
ȳ∗

(η,δ), ȳP

)
=

[
C2

y + C2
x(1 + 2C)

]

[
C2

y + g(1 − 2η)(1 − 2δ)C2
x{g(1 − 2η)(1 − 2δ) − 2C}

] × 100 (6.5)

Note1: We have computed the value of PRE
(
ȳ∗

(η,δ), ȳ), PRE
(
ȳ∗

(η,δ), ȳRd

)
and PRE

(
ȳ∗

(η,δ), ȳR

)

for Population-I as the correlation coefficient between the study variate y and the auxiliary variable x is
positive.

Note 2: As the correlation coefficient between the study variate y and the auxiliary variable x is
negative therefore we have computed the values of PRE

(
ȳ∗

(η,δ), ȳ
)

, PRE
(
ȳ∗

(η,δ), ȳP d

)
and PRE

(
ȳ∗

(η,δ), ȳp

)

for Population-II.
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Note 3: It is to be mentioned for tables that in tables they have been developed for various values of
C, Cx, Cy and ρ but have not included in the paper to save spaces.

Results are depicted in Tables 6.2, 6.4 and 6.5.

Table 6.1-PRE’s of ȳ, ȳRd, and ȳR with respect to ȳ for Population-I

Estimator ȳ ȳR ȳRd

PRE(., ȳ) 100.00 97.23 115.27

Table 6.2- Range of η for given values δ under which the suggested class of estimators ȳ∗
(η,δ) is better

than ȳ, ȳR and ȳRd for Population-I

For
given
values
of δ

Range of η for
given values of

δ in which ȳ∗
(η,δ)

is better than ȳ

Range of η for
given values of

δ in which
ȳ∗

(η,δ) is better
than ȳR

Range of η for
given values of δ
in which ȳ∗

(η,δ)
is better than ȳRd

Common range of η

for given values of δ
in which ȳ∗

(η,δ) is better
than ȳ, ȳR and ȳRd

3.00 η < 0.87 0.48 < η < 0.88 0.60 < η < 0.77 0.60 < η < 0.77
2.75 η < 0.91 0.48 < η < 0.92 0.61 < η < 0.80 0.61 < η < 0.92
2.50 η < 0.96 0.48 < η < 0.98 0.63 < η < 0.84 0.63 < η < 0.84
2.25 η < 1.03 0.47 < η < 1.05 0.64 < η < 0.89 0.64 < η < 0.89
2.00 η < 1.12 0.47 < η < 1.14 0.67 < η < 0.95 0.67 < η < 0.95
1.75 η < 1.24 0.47 < η < 1.27 0.70 < η < 1.04 0.70 < η < 1.04
1.50 η < 1.43 0.46 < η < 1.46 0.75 < η < 1.18 0.75 < η < 1.18
1.25 η < 1.74 0.45 < η < 1.78 0.83 < η < 1.40 0.83 < η < 1.40
1.00 η < 2.35 0.43 < η < 2.42 1.00 < η < 1.85 1.00 < η < 1.85
0.75 η < 4.21 0.35 < η < 4.36 1.50 < η < 3.21 1.50 < η < 3.21
0.45 −18.03 < η < 1.25 −18.79 < η < 1.25 −13.03 < η < 4.50 −13.03 < η < −4.50
0.25 −3.21 < η < 0.50 −3.36 < η < 0.65 −2.21 < η < −0.50 −2.21 < η < −0.50
0.00 −1.35 < η < 0.50 −1.43 < η < 0.57 −0.8530 < η < 0.00 −0.8530 < η < 0.00

Table 6.3- PRE’s of ȳ, ȳP d, and ȳP with respect to ȳ for Population-II

Estimator ȳ ȳP ȳP d

PRE(., ȳ) 100.00 105.510 113.254

Table 6.4- Range of η for given values δ under which the suggested class of estimators ȳ∗
(η,δ) is better

than ȳ, ȳP and ȳP d for Population-II
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For
given
values
of δ

Range of η for
given values of

δ in which ȳ∗
(η,δ)

is better than ȳ

Range ofη for
given values of

δ in which
ȳ∗

(η,δ) is better
than ȳp

Range of ηfor
given values ofδ
in which ȳ∗

(η,δ)
better than ȳP d

Common range of η

for given values of δ
in which ȳ∗

(η,δ) is better
than ȳ, ȳP and ȳP d

-3.00 η < 0.68 0.57 < η < 0.61 0.57 < η < 0.60 0.57 < η < 0.60
-2.75 η < 0.69 0.58 < η < 0.62 0.58 < η < 0.61 0.58 < η < 0.61
-2.50 η < 0.71 0.58 < η < 0.63 0.58 < η < 0.62 0.58 < η < 0.62
-2.25 η < 0.73 0.59 < η < 0.64 0.59 < η < 0.64 0.59 < η < 0.64
-2.00 η < 0.75 0.60 < η < 0.65 0.6 < η < 0.65 0.6 < η < 0.65
-1.75 η < 0.78 0.61 < η < 0.67 0.61 < η < 0.66 0.61 < η < 0.66
-1.50 η < 0.81 0.62 < η < 0.69 0.63 < η < 0.68 0.63 < η < 0.68
-1.25 η < 0.86 0.64 < η < 0.72 0.64 < η < 0.71 0.64 < η < 0.71
-1.00 η < 0.91 0.66 < η < 0.75 0.67 < η < 0.75 0.67 < η < 0.75
-0.75 η < 0.99 0.70 < η < 0.8 0.7 < η < 0.80 0.7 < η < 0.80
-0.50 η < 1.121 0.75 < η < 0.88 0.75 < η < 0.88 0.75 < η < 0.88
-0.25 η < 1.33 0.83 < η < 1 0.83 < η < 1 0.83 < η < 1
-0.00 η < 1.74 0.99 < η < 1.25 1 < η < 1.24 1 < η < 1.24
0.25 η < 2.99 1.49 < η < 2 1.5 < η < 1.9 1.5 < η < 1.9

Table 6.5- PRE’s of the suggested class of estimators ȳ∗
(η,δ) with respect to ȳ, ȳRd and ȳR for Population-

I.
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳRd

)
PRE

(
ȳ∗

(η,δ), ȳR

)

0.60 115.27 100 118.55
0.65 119.33 103.52 122.73
0.70 120.05 104.15 123.47
0.75 117.32 101.78 120.66
0.77 115.34 100.06 118.62
0.62 116.12 100.74 119.43
0.65 118.44 102.75 121.82
0.70 120.19 104.26 123.61
0.75 119.10 103.32 122.49
0.80 115.34 100.06 118.62
0.63 115.71 100.38 119.00
0.65 117.26 101.73 120.60
0.70 119.75 103.89 123.17
0.75 120.05 104.15 123.47
0.80 118.13 102.48 121.49
0.83 115.98 100.62 119.29
0.65 115.81 100.47 119.11
0.70 118.77 103.04 122.16
0.75 120.13 104.22 123.56
0.80 119.78 103.91 123.19
0.85 117.74 102.14 121.09
0.88 115.77 100.44 119.07
0.67 115.49 100.19 118.78
0.70 117.26 101.73 120.60
0.75 119.33 103.52 122.73
0.80 120.19 104.27 123.61
0.85 119.78 103.91 123.19
0.90 118.13 102.48 121.49
0.95 115.34 100.06 118.62
0.70 115.27 100 118.55
0.75 117.69 102.10 121.04
0.80 119.33 103.52 122.73
0.85 120.13 104.22 123.55
0.90 120.05 104.15 123.47
0.95 119.10 103.32 122.49
1.00 117.32 101.78 120.66
1.04 115.34 100.06 118.62

Table 6.5 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳRd

)
PRE

(
ȳ∗

(η,δ), ȳR

)

0.75 115.27 100 118.55
0.80 117.26 101.73 120.60
0.85 118.77 103.04 122.16
0.90 119.75 103.89 123.17
0.95 120.19 104.27 123.61
1.00 120.05 104.15 123.47
1.05 119.36 103.55 122.76
1.10 118.13 102.48 121.49
1.15 116.39 100.97 119.70
1.17 115.56 100.25 118.85
0.84 115.49 100.19 118.78
0.85 115.81 100.47 119.11
0.90 117.26 101.73 120.60
0.95 118.44 102.75 121.82
1.00 119.33 103.52 122.73
1.05 119.92 104.03 123.33
1.10 120.19 104.27 123.61
1.15 120.14 104.22 123.56
1.20 119.78 103.91 123.19
1.25 119.10 103.32 122.49
1.30 118.13 102.48 121.49
1.35 116.87 101.39 120.19
1.40 115.34 100.06 118.62
1.00 115.27 100 118.55
1.05 116.32 100.91 119.64
1.10 117.26 101.73 120.60
1.15 118.08 102.44 121.44
1.20 118.77 103.04 122.16
1.25 119.33 103.52 122.73
1.30 119.75 103.89 123.17
1.35 120.04 104.14 123.46
1.40 120.19 104.27 123.61
1.45 120.19 104.27 123.62
1.50 120.05 104.15 123.47
1.55 119.78 103.91 123.19
1.60 119.36 103.55 122.76
1.65 118.81 103.07 122.19
1.70 118.13 102.48 121.49
1.75 117.32 101.78 120.66
1.80 116.39 100.97 119.70
1.85 115.34 100.06 118.62

Table 6.5 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳRd

)
PRE

(
ȳ∗

(η,δ), ȳR

)

0.75 115.27 100 118.55
0.80 117.26 101.73 120.60
0.85 118.77 103.04 122.16
0.90 119.75 103.89 123.17
0.95 120.19 104.27 123.61
1.00 120.05 104.15 123.47
1.05 119.36 103.55 122.76
1.10 118.13 102.48 121.49
1.15 116.39 100.97 119.70
1.17 115.56 100.25 118.85
0.84 115.49 100.19 118.78
0.85 115.81 100.47 119.11
0.90 117.26 101.73 120.60
0.95 118.44 102.75 121.82
1.00 119.33 103.52 122.73
1.05 119.92 104.03 123.33
1.10 120.19 104.27 123.61
1.15 120.14 104.22 123.56
1.20 119.78 103.91 123.19
1.25 119.10 103.32 122.49
1.30 118.13 102.48 121.49
1.35 116.87 101.39 120.19
1.40 115.34 100.06 118.62
1.00 115.27 100 118.55
1.05 116.32 100.91 119.6
1.10 117.26 101.73 120.60
1.15 118.08 102.44 121.44
1.20 118.77 103.04 122.16
1.25 119.33 103.52 122.73
1.30 119.75 103.89 123.17
1.35 120.04 104.14 123.46
1.40 120.19 104.27 123.61
1.45 120.19 104.27 123.62
1.50 120.05 104.15 123.47
1.55 119.78 103.91 123.19
1.60 119.36 103.55 122.76
1.65 118.81 103.07 122.19
1.70 118.13 102.48 121.49
1.75 117.32 101.78 120.66
1.80 116.39 100.97 119.70
1.85 115.34 100.06 118.62

Table 6.5 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳRd

)
PRE

(
ȳ∗

(η,δ), ȳR

)

1.50 115.27 100 118.55
1.55 115.81 100.47 119.11
1.60 116.32 100.91 119.6
1.65 116.81 101.33 120.14
1.70 117.26 101.73 120.60
1.75 117.69 102.10 121.04
1.80 118.08 102.44 121.44
1.85 118.44 102.75 121.82
1.90 118.77 103.04 122.16
1.95 119.07 103.29 122.46
2.00 119.33 103.52 122.73
2.05 119.56 103.72 122.97
2.10 119.75 103.89 123.17
2.15 119.92 104.03 123.33
2.20 120.04 104.14 123.46
2.25 120.13 104.22 123.55
2.30 120.19 104.27 123.61
2.35 120.21 104.28 123.63
2.40 120.19 104.27 123.62
2.45 120.14 104.23 123.56
2.50 120.05 104.15 123.47
2.55 119.93 104.05 123.35
2.60 119.78 103.91 123.19
2.65 119.59 103.74 122.99
2.70 119.36 103.55 122.76
2.75 119.10 103.32 122.49
2.80 118.81 103.07 122.19
2.85 118.49 102.79 121.86
2.90 118.13 102.48 121.49
2.95 117.74 102.14 121.09
3.00 117.32 101.78 120.66
3.05 116.87 101.39 120.19
3.10 116.39 100.97 119.70
3.15 115.88 100.53 119.18
3.20 115.34 100.06 118.62

-13.03 115.28 100.00 118.56
-13.00 115.34 100.06 118.62
-12.80 115.77 100.44 119.07
-12.60 116.19 100.80 119.49
-12.40 116.58 101.14 119.90

Table 6.5 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳRd

)
PRE

(
ȳ∗

(η,δ), ȳR

)

-12.20 116.96 101.47 120.29
-12.00 117.32 101.78 120.66
-11.90 117.49 101.93 120.84
-11.70 117.82 102.21 121.18
-11.50 118.13 102.48 121.49
-11.30 118.42 102.73 121.79
-11.10 118.68 102.96 122.07
-11.00 118.81 103.07 122.19
-10.80 119.05 103.28 122.44
-10.60 119.26 103.46 122.66
-10.40 119.46 103.63 122.86
-10.20 119.63 103.78 123.04
-10.00 119.78 103.91 123.19
-9.80 119.90 104.02 123.32
-9.60 120.01 104.11 123.43
-9.40 120.09 104.18 123.51
-9.20 120.15 104.24 123.58
-9.00 120.19 104.27 123.62
-8.80 120.21 104.28 123.63
-8.60 120.20 104.28 123.62
-8.40 120.17 104.25 123.59
-8.20 120.12 104.20 123.54
-8.00 120.04 104.14 123.46
-7.80 119.94 104.05 123.36
-7.60 119.82 103.95 123.24
-7.40 119.68 103.83 123.09
-7.20 119.52 103.68 122.92
-7.00 119.33 103.52 122.73
-6.80 119.12 103.34 122.52
-6.60 118.90 103.14 122.28
-6.40 118.64 102.93 122.02
-6.20 118.37 102.69 121.74
-6.00 118.08 102.44 121.44
-5.80 117.77 102.17 121.12
-5.60 117.44 101.88 120.78
-5.40 117.08 101.57 120.42
-5.20 116.71 101.25 120.04
-5.00 116.32 100.91 119.64
-4.80 115.92 100.56 119.22
-4.60 115.49 100.191 118.78
-4.50 115.27 100 118.55

Table 6.5 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳRd

)
PRE

(
ȳ∗

(η,δ), ȳR

)

-2.20 115.34 100.06 118.62
-2.10 116.39 100.97 119.70
-2.00 117.32 101.78 120.66
-1.90 118.13 102.48 121.49
-1.80 118.81 103.07 122.19
-1.70 119.36 103.55 122.77
-1.60 119.78 103.91 123.18
-1.50 120.05 104.15 123.47
-1.40 120.19 104.27 123.62
-1.30 120.19 104.27 123.61
-1.20 120.04 104.14 123.46
-1.10 119.75 103.89 123.17
-1.00 119.33 103.52 122.73
-0.90 118.77 103.04 122.16
-0.80 118.08 102.44 121.44
-0.70 117.26 101.73 120.60
-0.60 116.32 100.91 119.63
-0.50 115.27 100 118.55
-0.85 115.34 100.06 118.62
-0.80 116.39 100.97 119.70
-0.75 117.32 101.78 120.66
-0.70 118.13 102.48 121.49
-0.65 118.81 103.07 122.19
-0.60 119.36 103.55 122.76
-0.55 119.78 103.91 123.19
-0.50 120.05 104.15 123.47
-0.45 120.19 104.27 123.62
-0.40 120.19 104.27 123.61
-0.35 120.04 104.14 123.46
-0.30 119.75 103.89 123.17
-0.25 119.33 103.52 122.73
-0.20 118.77 103.04 122.16
-0.15 118.08 102.44 121.44
-0.10 117.26 101.73 120.60
-0.05 116.32 100.91 119.64

0 115.27 100 118.55

Table 6.6- PRE’s of the suggested class of estimators ȳ∗
(η,δ) with respect to ȳ, ȳP d and ȳp for Population-

II.
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳP d

)
PRE

(
ȳ∗

(η,δ), ȳP

)

0.58 126.52 101.75 136.14
0.60 130.54 104.99 140.47
0.62 132.82 106.82 142.92
0.64 133.15 107.09 143.28
0.66 131.52 105.77 141.52
0.68 128.06 102.99 137.79
0.58 125.10 100.61 134.61
0.60 129.30 103.98 139.12
0.62 132.07 106.22 142.11
0.64 133.23 107.15 143.36
0.66 132.69 106.71 142.78
0.68 130.48 104.94 140.40
0.70 126.77 101.95 136.41
0.59 125.82 101.19 135.39
0.60 127.83 102.81 137.55
0.62 130.98 105.34 140.94
0.64 132.82 106.82 142.92
0.66 133.23 107.15 143.36
0.68 132.18 106.31 142.23
0.70 129.75 104.35 139.61
0.72 126.08 101.39 135.67
0.60 126.18 101.48 135.77
0.62 129.56 104.19 139.41
0.64 131.91 106.09 141.94
0.66 133.12 107.06 143.24
0.68 133.10 107.05 143.22
0.70 131.87 106.05 141.89
0.72 129.49 104.14 139.33
0.74 126.08 101.39 135.67
0.60 124.34 100 133.79
0.62 127.83 102.81 137.56
0.64 130.54 104.99 140.47
0.66 132.36 106.45 142.42
0.68 133.20 107.13 143.33
0.70 133.04 106.99 143.15
0.72 131.87 106.05 141.89
0.74 129.75 104.35 139.61
0.76 126.77 101.95 136.41
0.77 124.10 100.52 134.49

Table 6.6 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳP d

)
PRE

(
ȳ∗

(η,δ), ȳP

)

0.62 125.82 101.19 135.39
0.64 128.73 103.53 138.52
0.66 130.98 105.34 140.94
0.68 132.49 106.55 142.56
0.70 133.20 107.13 143.33
0.72 133.10 107.05 143.22
0.74 132.18 106.31 142.23
0.76 130.48 104.94 140.40
0.78 128.06 102.99 137.79
0.80 124.99 100.52 134.49
0.63 125.09 100.61 134.6
0.65 127.83 102.81 137.56
0.67 130.07 104.61 139.9
0.69 131.75 105.96 141.7
0.71 132.82 106.82 142.92
0.73 133.25 107.17 143.38
0.75 133.04 106.99 143.15
0.77 132.18 106.31 142.23
0.79 130.71 105.12 140.64
0.81 128.65 103.47 138.44
0.83 126.08 101.39 135.67
0.65 125.28 100.76 134.81
0.67 127.68 102.68 137.38
0.69 129.69 104.30 139.55
0.71 131.29 105.59 141.27
0.73 132.43 106.50 142.49
0.75 133.09 107.03 143.21
0.77 133.26 107.17 143.39
0.79 132.93 106.91 143.03
0.81 132.11 106.25 142.15
0.83 130.82 105.21 140.76
0.85 129.08 103.81 138.89
0.87 126.94 102.09 136.59
0.89 124.43 100.07 133.89
0.67 124.72 100.31 134.20
0.69 126.86 102.03 136.51
0.71 128.73 103.53 138.52
0.73 130.31 104.80 140.22
0.75 131.57 105.81 141.57
077 132.49 106.55 142.56

Table 6.6 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳP d

)
PRE

(
ȳ∗

(η,δ), ȳP

)

0.79 133.06 107.01 143.17
0.81 133.26 107.17 143.39
0.83 133.10 107.05 143.22
0.85 132.58 106.62 142.66
0.87 131.70 105.92 141.71
0.89 130.48 104.94 140.40
0.91 128.94 103.69 138.74
0.93 127.10 102.22 136.77
0.95 124.99 100.52 134.49
0.70 124.34 100 133.79
0.72 126.18 101.48 135.77
0.74 127.83 102.81 137.55
0.76 129.29 103.98 139.12
0.78 130.54 104.99 140.47
0.80 131.57 105.81 141.57
0.82 132.36 106.45 142.42
0.84 132.91 106.89 143.01
0.86 133.20 107.13 143.33
0.88 133.25 107.16 143.38
0.90 133.04 106.99 143.15
0.92 132.58 106.62 142.66
0.94 131.87 106.05 141.89
0.96 130.92 105.29 140.88
0.98 129.75 104.35 139.61
1.00 128.36 103.23 138.12
1.02 126.77 101.95 136.41
1.04 124.99 100.52 134.49
0.75 124.34 100 133.79
0.77 125.82 101.19 135.39
0.79 127.19 102.29 136.86
0.81 128.44 103.29 138.21
0.83 129.56 104.19 139.41
0.85 130.54 104.99 140.47
0.87 131.38 105.66 141.37
0.89 132.07 106.22 142.11
0.91 132.61 106.65 142.69
0.93 132.99 106.95 143.09
0.95 133.20 107.13 143.33
0.97 133.26 107.17 143.39
0.99 133.15 107.09 143.28

Table 6.6 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳP d

)
PRE

(
ȳ∗

(η,δ), ȳP

)

1.01 132.88 106.87 142.99
1.03 132.46 106.53 142.53
1.05 131.87 106.05 141.89
1.07 131.13 105.46 141.10
1.09 130.25 104.75 140.15
1.11 129.22 103.92 139.04
1.13 128.06 102.99 137.79
1.15 126.77 101.95 136.41
1.17 125.36 100.82 134.89
1.18 124.62 100.22 134.09
0.84 124.72 100.31 134.20
0.86 125.82 101.19 135.39
0.88 126.86 102.03 136.51
0.90 127.83 102.81 137.55
0.92 128.73 103.53 138.52
0.94 129.56 104.19 139.41
0.96 130.31 104.80 140.22
0.98 130.98 105.34 140.94
1.00 131.57 105.81 141.57
1.02 132.07 106.22 142.11
1.04 132.49 106.55 142.56
1.06 132.82 106.82 142.92
1.08 133.06 107.01 143.17
1.10 133.20 107.13 143.33
1.12 133.27 107.17 143.39
1.14 133.27 107.15 143.36
1.16 133.10 107.05 143.22
1.18 132.88 106.87 142.99
1.20 132.58 106.62 142.66
1.22 132.18 106.31 142.23
1.24 131.69 105.92 141.71
1.26 131.13 105.46 141.10
1.28 130.48 104.94 140.40
1.30 129.75 104.35 139.61
1.32 128.94 103.69 138.74
1.34 128.06 102.99 137.79
1.36 127.10 102.22 136.77
1.38 126.08 101.40 135.67
1.40 124.99 100.52 134.49

Table 6.6 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳP d

)
PRE

(
ȳ∗

(η,δ), ȳP

)

1.00 124.34 100 133.79
1.02 125.09 100.61 134.61
1.04 125.82 101.19 135.39
1.06 126.52 101.75 136.14
1.08 127.19 102.29 136.86
1.10 127.83 102.81 137.55
1.12 128.44 103.30 138.21
1.14 129.01 103.76 138.82
1.16 129.56 104.20 139.41
1.18 130.07 104.61 139.96
1.20 130.54 104.99 140.47
1.22 130.98 105.34 140.94
1.24 131.38 105.66 141.37
1.26 131.75 105.96 141.76
1.28 132.07 106.22 142.11
1.30 132.36 106.45 142.42
1.32 132.61 106.65 142.69
1.34 132.82 106.82 142.92
1.36 132.99 106.95 143.09
1.38 133.12 107.06 143.24
1.40 133.20 107.13 143.33
1.42 133.25 107.17 143.38
1.44 133.26 107.17 143.39
1.46 133.23 107.15 143.36
1.48 133.15 107.09 143.28
1.50 133.04 106.99 143.15
1.52 132.88 106.87 142.99
1.54 132.69 106.71 142.78
1.56 132.46 106.53 142.53
1.58 132.18 106.31 142.23
1.60 131.87 106.05 141.89
1.62 131.52 105.77 141.52
1.64 131.13 105.46 141.10
1.66 130.71 105.12 140.64
1.68 130.25 104.75 140.15
1.70 129.75 104.35 139.61
1.72 129.22 103.92 139.04
1.74 128.66 103.47 138.44
1.76 128.06 102.99 137.79

Table 6.6 continued
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η δ PRE
(
ȳ∗

(η,δ), ȳ
)

PRE
(
ȳ∗

(η,δ), ȳP d

)
PRE

(
ȳ∗

(η,δ), ȳP

)

1.78 127.43 102.48 137.12
1.80 126.77 101.95 136.41
1.82 126.08 101.40 135.67
1.84 125.36 100.82 134.89
1.86 124.62 100.22 134.09
1.50 124.34 100 133.79
1.52 124.72 100.31 134.20
1.54 125.09 100.61 134.61
1.56 125.46 100.90 135.00
1.58 125.82 101.19 135.39
1.60 126.18 101.48 135.77
1.62 126.52 101.75 136.14
1.64 126.86 102.03 136.51
1.66 127.19 102.29 136.86
1.68 127.52 102.55 137.21
1.70 127.83 102.81 137.55
1.72 128.14 103.06 137.88
1.74 128.44 103.30 138.21
1.76 128.73 103.53 138.52
1.78 129.02 103.76 138.83
1.80 129.29 103.98 139.12
1.82 129.56 104.20 139.41
1.84 129.82 104.41 139.69
1.86 130.07 104.61 139.96
1.88 130.31 104.80 140.22
1.90 130.54 104.99 140.47
1.92 130.77 105.17 140.71
1.94 130.98 105.34 140.94
1.96 131.19 105.51 141.16
1.98 131.38 105.66 141.37
1.20 117.93 94.85 126.89

We have computed the ranges of η for given values of δ in which the suggested class of estimators
ȳ∗

(η,δ) is more efficient than ȳ, ȳR and ȳRd for Population-I.
We have also given the common range of η under which the suggested class of estimators ȳ∗

(η,δ) is
better than the estimators ȳ,ȳR and ȳRd. Findings are shown in Table 6.2. It is observed from Table 6.2
that the length of the common range of η increases as the value of δ, δ ≥ (0.75) ( i.e. δ > 1

2

)
while it

decreases when (δ ≤ 0.45) ( i.e. δ < 1
2

)
.

Table 6.1 shows that the dual to ratio estimator ȳRd is more efficient than usual unbiased estimator
ȳ and the ratio estimator ȳR. The performance of the ratio estimator ȳR is even poor than the usual
unbiased estimator ȳ.

It is observed from Tables 6.1 and 6.5 that for selected values of (η, δ) the proposed class of estimators
ȳ∗

(η,δ) is better than ȳ, ȳR and ȳRd. Largest gain in efficiency is observed by using the proposed class of
estimators ȳ∗

(η,δ) over the ratio estimator ȳR followed by ȳ. However their is marginal gain in efficiency by
using proposed class of estimators ȳ∗

(η,δ) over the dual to ratio estimator ȳRd. Thus there is enough scope
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of selecting the values of η (for given δ) vice versa for obtaining estimators better than ȳ, ȳR and ȳRd.
Table 6.4 presents the ranges of η for given values of δ under which the suggested class of estimators

ȳ∗
(η,δ) is better than ȳ, ȳP and ȳP d. The common ranges of η are also demonstrated in Table 6.4. It

is observed that the length of the common range of η increases as the values of |δ| decrease upto i.e.
δ ≥ (−0.25) while it also increases when δ goes beyond -0.25 i.e. δ ≥ (−0.25).

Table 6.6 exhibits that the proposed class of estimators ȳ∗
(η,δ) is more efficient than the estimators

ȳ, ȳP and ȳP d. Largest gain in efficiency is observed by using the proposed class of estimators ȳ∗
(η,δ) over

ȳP followed by ȳ. We add here that the suggested class of estimators ȳ∗
(η,δ) is better than the dual to

product estimator ȳP d with moderate gain in efficiency.
Table 6.3 shows that the dual to product estimator ȳP d is more efficient than the estimators ȳ and ȳP

with considerable gain in efficiency.
Comparing the entries of Table 6.3 and 6.5 it is observed that there is sufficient flexibility in the values

of η for given values of δ, for obtaining estimators better than the estimators ȳ, ȳP and ȳP d.

7 Conclusion
This article presents a dual to two parameter ratio-product-ratio estimator for estimating the population
mean Ȳ of the study variable y. Expressions of bias and mean squared error are obtained up to first order
of approximation. The optimum condition is obtained under which the suggested class of estimators has
the minimum mean squared error. It is observed that the dual to ratio and the dual to product estimators
investigated by Srivenkataramana (1980) and Bandyopadhyay (1980) are members of the suggested class
of estimators. The biases and mean squared errors of usual unbiased estimator ȳ , the dual to ratio
and the dual to product estimators ȳRd , ȳP d can be easily obtained from the bias and mean squared
error expressions of the proposed class of estimators ȳ∗

(η,δ) just by putting the appropriate values of the
constants (η, δ). It is the niceness of the proposed class of estimators ȳ∗

(η,δ) . We have also obtained
the preference regions of the envisaged estimator ȳ∗

(η,δ) under which it is better than the usual unbiased
estimator ȳ , ratio estimator ȳR , the dual to ratio estimator ȳRd, product estimator ȳP and the dual to
product estimator ȳP d. To see the performance of the class of estimators ȳ∗

(η,δ) over ȳ, ȳR, ȳRd,ȳP and ȳP d

we have conducted an empirical study. We have found that under realistic regions of η for given values
of δ , the proposed class of estimators ȳ∗

(η,δ) is more efficient than the estimators ȳ, ȳR ȳRd ȳP and ȳP d.
Thus the proposed class of estimators ȳ∗

(η,δ) is recommended for its use in practice.
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Abstract
In the Indian Premier League (IPL), a franchisee-based cricket tournament played in India, it has been found that
there are as many as 18 superlative international cricketers who participated in all the seasons of the tournament
from 2013 to 2018. The paper attempts to find the impact of ageing on the performance of all these 18 cricketers.
Accordingly, a measure is proposed for quantifying the performance of the cricketers, based on all the different
traits of the game i.e., batting, bowling, fielding and wicket keeping, for each of the seasons. Following this
several econometric models with performance measure of the selected cricketers across various season as the
dependent variable and age as the independent variable is fitted. The study finds that - out of the different
econometric models the linear fixed effect model, where intercepts vary from player to player but the slope is
constant across individual players provides the most reasonable fit. The study finds that aggregate ageing has
an impact on the performance of the players in Twenty20 cricket, but the rate at which ageing influences the
cricketers varies. However, the quadratic models failed to fit the data which was unexpected.

Keywords: Cricket Analytics, Econometric Models, Fixed Effect Model, Performance Measurement.

1 Introduction
The individual ageing process of human beings is a natural biological progression. The natural process of
getting older has a significant impact on everyone. The effect of ageing on sports persons is no exception.
In most sports, if we look at the career of a thriving sportsman- in the initial days he/she is recognized in
the sports arena as a good performer. With time, the player gradually improvises himself/herself to reach
his physical pinnacle and also the highest level of performance in his/her career. Then with maturity,
the skill and experience of the player increases and the player performs at the highest level successfully.
Following this at some stage of his career, the ageing of the player has its impact on the performance
level [4]. This indicates that some quadratic econometric models might fit the data better. The skill
and experience are not complemented sufficiently by the physical ability and therefore the performance
level shows a downward trend. This is the time when players think of retiring from sports or are not
considered any further by the selectors to represent their team or country. Several players at this stage
of their career change their roles and become coaches or mentors or TV commentators or settle down in
other professions. But there are players who do not abide by such average laws and have a different story
to tell. Some players start their career with a dramatic entry and then after some initial success gets lost

© 2023 Author(s). (https://www.thegsa.in/).
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once and for all. There are some others who keep playing successfully as if the age for them is just a
number. An interesting discussion in this regard appears in Saikia, Bhattacharjee and Mukherjee [16].

As per the demand of sports like hockey, soccer, basketball, etc., the physical aspect of players
dominates their performance. It has been widely reported as Relative Age Effect (RAE) in sports. Relative
age effect in sports is a worldwide phenomenon and it exists in many, but not all, competitive sports [12].
This phenomenon has been widely conveyed now and then in different newspapers as well as sports
magazines with respect to many sports. It is well understood that the performance of the players reaches
uttermost at a given age and then shows a decreasing trend. However, the determination of the peak
performing age of the players is always a difficult task. Moreover, the level of performance of the players
in a team game can vary depending on the strength of the opponents, different playing conditions, etc.

Cricket is a team game. So, the physical, and mental ability and technical skills isolated the better-
performing players from the other team members. With the development of franchisee-based cricket
tournament viz. Indian Premier League (IPL), Big Bash League (BBL), Bangladesh Premier League
(BPL), Sri Lankan Premier League (SLPL), Caribbean Premier League (CPL), etc. both retired players
and emerging talented players get a platform to perform and learn from each other. The IPL is an extensive
playing tournament which was initiated by the Board of Control for Cricket in India (BCCI) in the year
2008. As of May 2023, sixteen seasons of the IPL is played so far. In all these IPL seasons, it is true
that some of the young players were able to draw the attention of spectators through their performances.
However, the performances of senior players are also noteworthy in the IPLs. The best example is that of
Shane Warne, Sachin Tendulkar, Shane Watson, Adam Gilchrist, Mahendra Singh Dhoni etc.

It is believed that the senior players mark a massive impression in the IPLs usually due to their tactical
skills. This impression helped to make them everyday cricketers unlike the ones who fire only for a while
[8]. The skill sets of senior players are so comprehensive that they can crack the code in no time [21]
despite having less experience in the Twenty20 format of cricket. The performances of these senior players
remind us that there is no substitute for skill if anyone has to succeed in any format of the game of cricket.
However, as a player gets older, he becomes less fit for the game and more prone to injury [10]. It might
be due to the age effect, the demand for these players has steadily diminished. Therefore, they were no
longer playing for their respective teams [11]. This explicit discussion set the background of the study
which aims to examine “Does really age affects the performance of players in Twenty20 cricket?”

2 Review of Literature
The effect of age has already been studied by various authors in different kinds of sports. Most of these
studies revealed linear, curvilinear or exponential trends when modelling the effects of ageing [22]. A
linear trend was found when evaluating the effects of ageing on freely chosen walking speed [7]. Schulz
and Curnow [18] examined the age of peak performance in a broad range of athletic events. They
noted that the absolute levels of peak performance among super athletes have increased vividly but the
stability of peak performance cannot be ascertained. The curvilinear trend was observed when investigating
competitions in indoor rowing events [19] and in freestyle swimming performances, it was found to decrease
exponentially [20]. The percentage decline in masters’ super athletes with increasing age in track and
field performance was examined by Baker et al. [2]. They found that track running records declined
with ageing in a curvilinear fashion as y = 1 − exp(T −T0)

τ
, whereas in field events it declined in a linear

way as y = α[T − T0]. Also, they reported that the decline with ageing was greater for females and
longest-running events. In the case of baseball, Fair [4] estimated the effects of age using nonlinear
fixed effect regression and found that ageing effects are larger for pitchers than for batters. The peak
age of performance for professional baseball pitchers and batters are 26 and 28 years respectively. In
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many sports, the classification system (i.e. senior, young, peak performance age, etc. through cut-off
values) based on biological age is difficult to organize [12]. The effect of ageing for professional football
players using performance-ageing curves was evaluated by Young and Weckman [22]. Addona and Yates
[1] examined the relative age effect (RAE) in the National Hockey League (NHL). An analysis of master
athletes in running, swimming and cycling was performed by Ransdell et al. [14] by age group and gender.
They also examined how physiological, sociological and psychological factors affect master-level athletes’
performance in the USA. Lehto [9] investigated the age-related changes in endurance performance among
male amateur marathon runners from 1979 to 2014. He found a quadratic relationship of running time
t as a function of age x. The fitted quadratic model indicates that the marathon performance of the
average runner improves up to age 34.3 (± 2.6) years, thereafter the performance starts to decline. A
similar study was performed by Radek [13] to evaluate peak performance age in track and field athletes.
The study includes a total of 6314 athletes (3474 male and 2840 female) from the World Championships,
European Championships and Olympic Games. He found that the peak performance age for males and
females are 25 and 26 respectively.

Though a number of measures of performances were stated in the existing literature surrounding the
game of cricket, the impact of ageing on players’ feats did not enrich our search. However, a study was
found led by Hazra and Biswas [6] compared the mental skill ability of cricket players per different age-
level categories. They implemented a one-way analysis of variance (ANOVA) and revealed that age may
be the predictor of the mental skill ability of cricket players. This finding supports the usual belief that
physical, mental ability and technical skills separate the best-performing players in cricket from the rest of
the sports. In cricket, it is difficult to generalize a relation between ageing and performance, as cricketers
with different expertise attain their peak performance at different ages. Batsmen tend to reach their peak
in their late twenties after their technique matured through experience and conversely, fast bowlers often
reach their peak in between early to mid-twenties when they are at the height of their physical capacity.
Other bowlers, mostly spinners, even fast bowlers who can "swing" the ball, are most effective in the later
part of their career [15].

3 Data and Methodology
Out of all the franchisee-based cricket tournaments mentioned above, IPL is the eldest and most popular
tournament in terms of games as well as seasons. A large number of well-recognized players from different
countries participate in this tournament. The season-wise data for each player who played in IPLs are
available on www.espncricinfo.com. Having this data set available, one could easily identify the players
who had participated in several seasons of IPL played so far along with their age information. However,
there are only 18 players who participated unceasingly from the 2013 to 2018 IPL seasons. These 18
players are included in the study to examine the age effect on their performance.

Performance Measurement
The performances of these selected players are quantified using the different traits of the game (e.g.
batting, bowling, fielding and wicket-keeping). To quantify the batting performance of the players, the
factors considered are batting average, strike rate, and average percentage of contribution to the team
total. For the bowling performance of the players, the factors considered are bowling average, economy
rate and bowling strike rate. Similarly, for fielding the factors are run-outs, catches taken and missed
chances of catch and run-out are also considered. For wicket-keeping the factors are catches taken,
stampings executed and bye runs conceded. These factors under each of the traits (i.e. batting, fielding,
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bowling and wicket keeping) are normalized and then multiplied by weights and combined in a linear
fashion as in equation (1), to get the composite performance score.

The performance measure of the ith player is given by,

Si = Si1 + Si2 + δi (1)
where

δi =
{

Sai
i3 + S1−ai

i4 − 1, if ith player is either a bowler or wicket keeper
0, if ith player is neither a bowler nor wicket keeper

where ai is an indicator variable with

ai =
{

1, if ith player is a bowler
0, if ith player is a wicket keeper

with Si1 = Performance score for batting, Si2= Performance score for fielding, Si3= Performance
score for bowling and Si4 = Performance score for wicket keeping.

The performance scores of Si1, Si2, Si3 and Si4 for batting (k = 1), fielding (k = 2), bowling (k =
3) and wicket keeping (k = 4) are computed as

Sik = Σnk
j=1wjkYijk; where nk=3 for k=1, 2, 3 and 4 (2)

The details of normalization and weight determination of the factors can be seen in Saikia,
Bhattacharjee and Radhakrishnan [17]. On getting the values of Si1, Si2, Si3 and Si4 the performance
score of the players is computed using equation (1) and then converted into corresponding performance
index (Pi) which is given by

Pi = Si

Max(Si)
(3)

The performance score based on Pi for each player is a number lying between 0 and 1. The higher
the value of Pi better the player’s performance.

Modeling of Age Effect on Performance
Case-I: In order to examine the age effect on the performance of the cricketers, a standard static linear
panel regression model and a quadratic panel regression model are estimated. The models are expressed
as

Pit = β1 + β2Ait + ϵit, i = 1, 2, ..., N and t = 1, 2, ..., T (4)

Pit = β1 + β2Ait + β3A
2
it + ϵit (5)

where N = 18 cross section players, T = five years of IPLs and Pit represents the performance of the
ith player at time t. Again Ait represents the age of the player in time t, β1 is unobserved independent
variable i.e. independent of i and t, represents the squared term of the age of the players in time, ϵit is
the idiosyncratic error component varies with i and t. The model (4) is estimated applying pooled OLS,
which is desirable if β1 does not vary across time and cross-section, with an independent variable, like
age, introduced in the model. In the pooled OLS, the intercepts and slopes are the same over time and
with individual players. When we fit this model, it has been observed that there is no impact of age on
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the performance of the players. The coefficient of age (0.0049) is found statistically insignificant due
to the high p-value of 0.1711. The reason might be due to the possibility of heteroscedasticity. In this
context, we have applied white cross-section standard errors and covariance to correct the standard error
of OLS and solve the heteroscedasticity problem. The result shows slight improvement having p-value of
0.0316. However, along with the positive sign of the coefficient of age, with a low R2 value of 0.0176, F
statistics of 1.899 and its p-value of 0.1711 conclude that age does not affect performance significantly.
Alternatively, the model (5) is not found to be statistically significant with a very low R2 value of 0.02,
F statistics of 0.98 and its p-value of 0.38 (cf. Appendix-A).

One of the problems of pooled OLS is that the estimated coefficients will be unbiased and efficient if
(i) E(ϵit) = 0 and (ii) E(Ait, ϵit) = 0 i.e. Ait are weekly exogenous. However, if corr(ϵis, ϵit) ̸= 0 with
s ̸= t, which is very likely due to the fact that the individual (players) are repeatedly observed, then the
OLS will be biased and shall not be efficient. If errors are correlated, OLS is still unbiased but inefficient.
OLS is biased and inconsistent if the covariates are correlated with the error term. As a result, one may
go for either the Fixed Effect or Random Effect model. In the present equation, there may be some
unobserved individual factors, other than Age, which might affect performance. Then we may have to
decompose our error term ϵit as

ϵit = αi + uit

where uit is iid i.e. uit has a zero mean and homoscedastic and not serially correlated. In this case, we
may have to rely on the FE or RE model to estimate the model.

Case-II: Let us think of a linear as well as quadratic fixed effect model, where the intercepts vary,
although the slope is constant across individual players. This might be reasonable as the players are het-
erogeneous in nature. The fixed-effects (FE ) models are more suitable as we are interested in analysing the
impact of age variables that vary over time and it’s impact on performance. If αi are individual intercept
which is fixed for a given N denoting the average performance of all players individually irrespective of
age, then the models can be expressed as

Pit = β1i + β2Ait + ϵit (6)

Pit = β1i + β2Ait + β3A
2
it + ϵit (7)

In these fixed effect models, consistency does not require that the individual intercepts, whose coef-
ficients are the β1’s and ϵit are uncorrelated. Only E(Ait, ϵit) = 0 must hold. The parameter can be
estimated using OLS, LSDV, Within Estimator, and First Difference Estimator Method. In equation (6),
it assumes that all the players are having equal physical ability and no random event is influencing their
performance. By fitting the model (5), applying OLS the coefficient of age (-0.0157) which is negatively
related to the performance signifies that age effect exists on the performance of the players assisted by
p-value (0.0288). Applying further diagnostic checking of the model, the results show quite satisfactory.
Re-estimating the FEM with White cross-section standard errors and covariance, p-value the coefficient
of age is now 0.0005, R2 value is 0.368, F statistics is 2.88 with p-value of 0.0005. The common in-
tercept of 0.777 implies how much the performance of a player is different from the common intercept
value. Since the same intercept β1 is now statistically significant with values of 0.0003, it indicates that
the performance of the players will obviously be different as players are different with respect to their
individual characteristics. However, the model (7) is again not found to be statistically significant with
R2 value of 0.37, F statistics is 2.74 with p-value of 0.09 (cf. Appendix-A).
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Case-III: However, there is no reason to assume that all the players are having equal physical ability.
Therefore, the intercept term shall vary in equation (6) from player to player. Here one can think of fit-
ting random effect models where the intercept varies, and the slope is constant across individual players.
The random effect model to examine age effect (A) on performance (P ) are defined as

Pit = β1i + β2A2it + β3it + ϵit (8)

Pit = β1i + β2A2it + β3A
2
it + β4it + ϵit (9)

If β1i = β1 + δt, then the new random effect model of equation (8) shall be

Pit = β1 + β2A2it + β3it + wit, where wit ∼ iid N(0, σ2
ϵ ) (10)

The β1’s are random variables with the same version. The value of β1 is specific to individual players.
The β1’s for different players are different having a mean of zero and the distributions are assumed to be
normal. The overall mean is captured by β0 and β1 is time-invariant. To estimate the parameter OLS can
be applied provided ϵit is homoscedastic and not serially correlated. But if ϵit is not homoscedastic then
one can apply GLS and if it has serial correlation then FGLS can be applied (Parks, 1967). However, the
problem of FGLS is that it is implemented and performs well only when T > N and underestimated SE s
in finite sample. The solution to this problem could be to apply Panel Corrected Standard Error (PCSE )
by Beck and Katz [3]. So PCSE is better than FGLS.

In equation (8), the variations across players are assumed to be random and have some influence on
the predictor “age”. By fitting this model with OLS, we confirmed that age does not significantly affect
the performance of the players. Since the p-value of age coefficient (0.0004) is 0.9197. We have explored
all four PCSE specifications to correct the serial correlation problem and re-estimate the t-statistics.
Applying the standard errors and covariance the p-values for, cross-section SUR (PCSE ) is 0.93, for
cross-section weights (PCSE ) is 0.92, for period SUR (PCSE ) is 0.93 and for period weights (PCSE ) is
0.923. This confirms that age does not statistically significantly affect performance. However, as stated
random effect may not be suitable when T (= 6) < N (=18), as in this case, thus we are getting an
absurd result. Alternatively, the model (9) is again not found to be statistically significant with R2 value
of 0.004, F statistics is 0.214 with p-value of 0.808 (cf. Appendix-A).

Further, which model is better to examine the age effect on performance, in both equation (6) and
equation (10), the age effect is found to be contradictory. The solution should be apparently judged by
the statistical significance of the estimated regression coefficients. Here we would like to use Durbin-
Wu-Hausman test, which is also popularly known as Hausman [5] test to choose an appropriate model
for our data between fixed effect and random effect model. Moreover, pooled OLS regression yields
inconsistent coefficient estimates when the true model is the fixed effects model. So, to test the presence
of subject-specific fixed effects, it is common to perform Hausman test.

The null hypothesis (H0) of this test is that the preferred model for our data is a random effect model,
which is consistent as well as efficient against the alternative hypothesis (H1) the preferred model is a
fixed effect model that is at least as consistent. Under the null hypothesis (H0), the Durbin-Wu-Hausman
test statistic is defined as

H = (β2 − β1)′(V ar(β1) − V ar(β2))+(β2 − β1) (11)

where ’+’ denotes the Moore–Penrose pseudo-inverse 1. The test statistic asymptotically follows the
1In linear algebra, a pseudo-inverse A+ of a matrix A is a generalization of the inverse matrix. The most widely known

type of matrix pseudo-inverse is the Moore-Penrose Inverse, which was independently described by E. H. Moore in 1920,
Arne Bjerhammarin 1951, and Roger Penrose in 1955.
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chi-squared distribution with the degrees of freedom equal to the rank of matrix (V ar(β1) − V ar(β2)).
This test rejects the null hypothesis (H0), as the p-value corresponding to χ2 statistic (8.281) is 0.004
(< 0.05) and so we do not have robust and sufficient evidence to consider the random effect model for
our data. Therefore, we shall proceed with the fixed effect model (cf. Case-II) to examine the age effect
on the performance of the players.

4 Regression Results and Discussion
Using equation (6), the estimated regression coefficients under the fixed effect model are shown in Table
1. The OLS method is being used to estimate the intercept and coefficients.

Variable Coefficient Std.Error t-statistics p-value
C 0.777061 0.208181 3.732618 0.0003
AGE -0.015733 0.007072 -2.224832 0.0286
Fixed Effects
Ab de Villiars-C 0.040830
A Rahane-C -0.090964
A Rayudu-C -0.080678
C Gayle-C 0.184728
G Gambhir-C -0.017734
K Pollard-C 0.032356
D Karthik-C -0.065031
M Pandey-C -0.144187
MS Dhoni-C 0.058574
P Patel-C -0.099320
R Sharma-C -0.019837
R Uthappa-C -0.034303
S Dhawan-C -0.035526
S Raina-C 0.078206
S Samson-C -0.216253
V Kohli-C -0.027457
Y Pathan-C 0.255233
Y Singh-C -0.181361

Table 1: The estimated parameters of fixed effect model

In Table 1, the value of ‘C’ is known as the differential intercept coefficient, which represents the
average performance of all the players across all six seasons of IPLs (i.e. 2013 to 2018 years). The p-value
corresponding to the ‘Age’ coefficient is 0.028 (< 0.05) which reflects a significant age effect on the
performance of the players. In addition, the negative sign of the age coefficient value indicates that the
performance of the players decreases as age increases with all players considered together.

Apart from that some fixed effects coefficients for individual players can be seen in Table 1. If we add
these fixed effect coefficients value to the average performance of all the players (i.e. C) then we shall get
the expected average performance of each player estimated from the model. For example, let us consider
the fixed effect coefficient value of the player AB de Villiars which is 0.040830. Now 0.040830+0.777061
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= 0.817891 is the estimated average performance of AB de Villiars for all six years. Similarly, for A Rahane
the estimated average performance based on the fitted model is −0.090964+0.777061 = 0.686096. The
negative value of the fixed effect coefficient indicates that the performance of the player has decreased
over the last six seasons of IPLs. On the contrary, a positive value implies an improvement in the payer’s
performance over the period considered.

The quadratic models are defined in equations (5), (7) and (9), viz. Pooled OLS (POLS), Fixed
Effect Model (FEM) and Random Effect Model (REM) significantly fit the data when age variable is
included in the models as quadratic terms. Though in terms of the sign of the coefficient Age2 provides
a negative coefficient indicating that as age increases, performance declines. However, as the coefficient
associated with Age2 is not statistically significant, so we can’t have a definite conclusion. Since we took
into account only six IPL seasons (i.e. 2013 to 2018) hence the coefficient associated with Age2 is not
significant. Thus, the claim made by Fair [4] does not seem to hold for this data set. This might be
because of the fact that the number of years considered for the study is not sufficient to capture the
quadratic pattern in the performance of the players against ageing.

5 Conclusion
This study tries to examine the age effect on the performance of the players in Twenty20 cricket. The
performances of the players are quantified through different traits of the game (i.e. batting, fielding,
bowling and wicket-keeping). Considering the performance as the dependent variable and the age of the
players as the independent variable, we tried to fit several regression models to examine the age effect.
Out of all the models discussed in the methodology, the fixed effect regression model is found to attain
the objective of the study in the best fashion.

The results obtained from the fixed effect regression model confirmed that in Twenty20 cricket age
has a significant impact on the performance of the players over time. Also, the performances of all the
players are not affected in a similar fashion with time. Every player has reached their peak performance
at different ages. However, the determination of peak performance age for individual players in cricket
is not an easy task. The level of performance of the players in a team game is varied depending on the
strength of the opponents and different playing conditions. This can be considered as further scope of
this research. Meanwhile, as an outcome of the study, it can be stated that the age effect indeed exists
in Twenty20 cricket too.
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Appendix

POLS FEM REM

V ariables C Age Age2 C Age Age2 C Age Age2

Coefficients 0.0225 0.0154 -0.0002 0.1640 0.0267 -0.0007 -0.0890 0.0283 -0.0005
SE 0.5263 0.0367 0.0006 0.8719 0.0591 0.0010 0.6091 0.0422 0.0007
t-statistic 0.0428 0.4191 -0.2870 0.1881 0.4525 -0.7241 -0.1462 0.6715 -0.6722
p-value 0.9660 0.6760 0.7747 0.8512 0.6520 0.4709 0.8841 0.5033 0.5029
R-square 0.02 0.37 0.004
Adj.R-square 0.00 0.24 -0.015
F -statistics 0.98 2.74 0.214
p-value 0.38 0.09 0.808
Hausman test 8.268
p-value 0.016

Table 2: (Appendix-A) Panel data regression results using equations (5), (7) and (9)
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Players Age-IPL2018 PS-IPL2013 PS-IPL2014 PS-IPL2015 PS-IPL2016 PS-IPL2017 PS-IPL2018

Ab de Villiars 33 0.3296 0.3778 0.3499 0.3330 0.2482 0.3897
A Rahane 29 0.2773 0.2826 0.3150 0.2662 0.2453 0.2286
A Rayudu 32 0.2141 0.2865 0.2120 0.1947 0.1514 0.3348
C Gayle 38 0.8325 0.2175 0.2946 0.5583 0.2154 0.3011
G Gambhir 36 0.2648 0.2515 0.1887 0.2448 0.3318 0.1119
K Pollard 30 0.6482 0.3983 0.5761 0.1863 0.2777 0.1738
D Karthik 32 0.2752 0.2812 0.1102 0.1845 0.3032 0.3331
M Pandey 28 0.2201 0.2937 0.1573 0.1948 0.3317 0.1923
MS Dhoni 36 0.3660 0.4425 0.1979 0.2276 0.2231 0.3944
P Patel 32 0.2519 0.2222 0.1989 0.1316 0.2590 0.2180
R Sharma 30 0.3119 0.6656 0.2560 0.2708 0.2253 0.2178
R Uthappa 32 0.2758 0.4120 0.2291 0.2138 0.3253 0.2157
S Dhawan 32 0.3305 0.2987 0.2011 0.2241 0.3195 0.2904
S Raina 31 0.3406 0.4842 0.5181 0.2041 0.6244 0.2698
S Samson 23 0.2458 0.2872 0.1534 0.1713 0.2954 0.2765
V kohli 29 0.3731 0.3232 0.5318 0.7068 0.5338 0.6571
Y Pathan 35 0.3731 0.3232 0.5318 0.7068 0.5338 0.6571
Y Singh 36 0.6084 0.6737 0.4206 0.1709 0.6317 0.0829

Table 3: (Appendix-B) Age of the players in IPL 2018 and Performance Score (PS) of the players from IPL 2013 to
IPL 2018 computed from raw data using the equation (1)
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Abstract
The concept of composite estimator plays a very important role in the development of small area estimation
(SAE) techniques and it has very wide applications as available in the literature. The computational aspects
and optimality of weights associated with the genesis of composite estimators are very precarious issues. Due to
related issues of composite estimators, its applicability is hampered and questionable in many real-life situations,
especially in domain estimation and particularly in small area estimation. In the present article, model-based
composite estimators for the small area proposed by Pandey and Kathuria (1995) have been utilized to derive the
sensitivity interval on weights with their performance regarding efficiency for the estimators. In addition, some
more weighing intervals and bounds are also developed which guarantees the superiority of composite estimators
as compare to their either component estimators.
Keywords: Small Area Estimation, Model-Based Composite Estimators, Optimum Weights, Sensitivity Interval,
Synthetic Estimates.

1 Introduction
The fundamental objectives of sample surveys have long been used as cost-effective means for data col-
lection. It is also pertinent to accept that the general purpose surveys will often not achieve adequate
precision of the estimator for subpopulations (often called domains or areas) of interest. Domains may be
geographical based areas such as districts, counties or states. They may also be cross classifications of a
small geographic area and a specific demographic, social or economic subgroups. A domain is regarded
as small if the domain-specific sample is not large enough to produce a direct estimate with adequate
reliable precision. Alternative estimation procedures based on “borrowing strength” from other related
small areas in order to increase the effective sample size for estimation and hence the accuracy of the
resulting estimates is called indirect method of estimation for e.g. synthetic estimation. According to
Gonzalez (1973), “An unbiased estimate is obtained from a sample survey for a large area; when this
estimate is used to derive estimates for sub areas on the assumption that the small areas have the same
characteristics as larger area, we identify these estimates as synthetic estimators”.

Direct estimators outperform the synthetic estimators if the sample size is large for the small area while
synthetic estimator is efficient as compared to direct estimators in case of small sample size for the small

© 2023 Author(s). (https://www.thegsa.in/).
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area provided larger area resamples with a smaller area in properties. Thus, an alternative approach of
composite estimators evolved which is weighted sum of two component estimators which can have mean
square error (MSE) smaller in comparison with MSE of either component estimator if a proper weighing
technique is used Schaible (1979). Computation of the optimal weight for the composite estimators is
generally insolvable and very tricky problem in small area estimation. It is usually not possible to get the
optimal weight for the composite estimator because the expression for the optimal MSE of the estimators
are difficult to evaluate under considered sampling plan.

Holt et al. (1979) has developed model-based approach for the estimation of small area total and it
was used by Pandey and Kathuria (1995) to obtained the composite estimators for small area estimation.
They also derived the expressions for optimum weights and the corresponding optimum MSE’s of the
proposed model-based composite estimators. The generalized class of composite estimator is also devel-
oped and analyze by Tikkiwal and Ghiya (2000), which include simple ratio, ratio-synthetic among many
other group of such estimators through proper convex combination of weights. Later, Rai and Pandey
(2013) analyze the efficiency of generalized composite estimators using two auxilary variables under dif-
ferent weighting schemes for different domains and recommended the application of two auxiliry varibles
over single one. Tikkiwal and Rai (2009) proposed composite estimators and their sensitivity intervals
of weights for the small area estimation. Moretti and Whitworth (2019) used sample size dependent
composite estimators in spatial microsimulation approaches for small area estimation.

To take care of the absence of optimum weights, we have also obtained the sensitivity interval of in-
volved weights in the form of better performance interval with a view to retaining superiority for the
composite estimator under different models developed by Holt et al.(1979).

2 Notations and Terminologies
A finite population of size N is divided into P mutually exclusive small areas, labeled i = 1, 2, 3, ..., P for
which estimates are required. Further, within each small area there are Q identifiable subgroups labeled
j = 1, 2, 3, ..., Q. This labeling of units gives a complete cross classification into PQ cells with Nij

population individual in the (i, j)th cell which is assumed to be known from previous censuses or any other
data sources.

Consider, Yijk be the value of kth unit in ith small area belonging to jth group. Yij and Ȳij be the
total and mean respectively for the population unit belonging to the (i, j)th cell. Also, let Yi. and Ȳi. be
the total and mean respectively for the character under study of ith small area in the population whereas
Y.. and Ȳ.. are the total and mean respectively for the character under study in the whole population. Let
N, Nij, N.j and Ni. are the total number of population units, size of population belonging to (i, j)th cell,
marginals size of jth group and ith small area respectively. Corresponding sample sizes are denoted as
n, nij, n.j and ni. with an assumption that nij > 0 for all i and j.

Further, let yij = ∑
k∈sij

yijk , ȳij = 1
nij

∑
k∈sij

yijk be the sample total and sample mean for
the character under study of (i, j)th cell respectively. Whereas, ȳi. = 1

ni.

∑
j

∑
k∈sij

yijk and ȳ.j =
1

n.j

∑
i

∑
k∈sij

yijk are the sample means for the character under study for ith small area and jth group
respectively. Moreover, ȳ.. = 1

n

∑
i

∑
j

∑
k∈sij

ȳi. is the overall sample mean for the character under study.
Holt et al. (1979) have given four different models for the estimation of the mean of small area. These
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are:

Model I : yijk = µ + eijk, var(eijk) = σ2
1; (2.1)

Model II : yijk = αi + eijk, var(eijk) = σ2
2; (2.2)

Model III : yijk = βj + eijk, var(eijk) = σ2
3; (2.3)

Model IV : yijk = µij + eijk, var(eijk) = σ2
4 (2.4)

where E(eijk) = 0, i = 1, 2, ...P, j = 1, 2, ...Q, k = 1, 2, ...Nij. Here, µij is an effect due to interaction
between ith small area and the jth group whereas αi and βj are the effects due to ith small area and the
jth group respectively in which kth observation lies.

Consider the following estimators for small domain total based on the above models

Ŷi(1) = ni.ȳi. + (Ni. − ni.)ȳ.. (2.5)
Ŷi(2) = Ni.ȳi. (2.6)
Ŷi(3) =

∑

j

nij (ȳij − ȳ.j) +
∑

j

Nij ȳ.j (2.7)

Ŷi(4) =
∑

j

Nij ȳij (2.8)

and their corresponding MSE’s are given as

MSE(Ŷi(1)) =
[

(Ni. − ni.)2

n
+ Ni. − ni.

]
σ2

1 (2.9)

MSE(Ŷi(2)) = N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

(2.10)

MSE(Ŷi(3)) =
∑

j

Nij − nij

nij

(Nij − nij + n.j)σ2
3 (2.11)

MSE(Ŷi(4)) =
∑

j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4 (2.12)

respectively. Pandey and Kathuria (1995) have given the model-based composite estimators for small
domain total based on the estimators developed in Eqs. (2.5) to (2.8) using models I to IV as follows:

Ŷic(1) = δ1Ŷi(1) + (1 − δ1)Ŷi(2) (2.13)
Ŷic(2) = δ2Ŷi(1) + (1 − δ2)Ŷi(3) (2.14)
Ŷic(3) = δ3Ŷi(3) + (1 − δ3)Ŷi(4) (2.15)
Ŷic(4) = δ4Ŷi(2) + (1 − δ4)Ŷi(4) (2.16)

where δ1, δ2, δ3, δ4 are the chosen weights. It is already discussed in the literature that estimation of the
weights is not so easy for researchers. Here, we have provided some alternative ways to get the bounds and
intervals for the weights in the absence of their optimum values and to get better composite estimates.
The details are provided in the next sections.

3 Proposed Performance Interval for Weights
One way to get the weights of composite estimators is to use MSE’s of the estimators provided and it is
free from complexity of its computation and existence. The composite estimator would perform better if
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MSE of composite estimator is always less than or equal to MSE of its individual component. This property
of composite estimator provides a performing interval for weights. Let us obtain the interval of weights
for composite estimator Ŷic(1) defined in Eq.(2.13) under the condition that MSE(Ŷic(1)) ≤ MSE(Ŷi(1))
implies

MSE
[
δ1Ŷi(1) + (1 − δ1)Ŷi(2)

]
≤ MSE

(
Ŷi(1)

)

δ1
2MSE

(
Ŷi(1)

)
+ (1 − δ1)2

MSE
(

Ŷi(2)

)
+ 2δ1 (1 − δ1) Cov

(
Ŷi(1), Ŷi(2)

)
≤ MSE

(
Ŷi(1)

)
.

After neglecting the covariance term, this can be written as
δ1

2(MSE(Ŷi(1)) + MSE(Ŷi(2))) − 2δ1MSE(Ŷi(2)) + (MSE(Ŷi(2)) − MSE(Ŷi(1))) ≤ 0.

This equation is quadratic in terms of δ1, after solving the equation we get two possible values such that

δ1 = MSE(Ŷi(2)) + MSE(Ŷi(1))
MSE(Ŷi(2)) + MSE(Ŷi(1))

= 1 or δ1 = MSE(Ŷi(2)) − MSE(Ŷi(1))
MSE(Ŷi(2)) + MSE(Ŷi(1))

(3.1)

Since, 1 is the highest value of composite weight δ1. So, we can evaluate the lower limit for performance
interval of weight by taking

δ1 ≥ MSE(Ŷi(2)) − MSE(Ŷi(1))
MSE(Ŷi(2)) + MSE(Ŷi(1))

(3.2)

On putting the expressions of MSE(Ŷi(1)) and MSE(Ŷi(2)) in Eq.(3.2), we get

δ1 ≥
N2

i.

(
1 − ni.

Ni.

)
σ2

2
ni.

−
[

(Ni.−ni.)2

n
+ Ni. − ni.

]
σ2

1

N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

+
[

(Ni.−ni.)2

n
+ Ni. − ni.

]
σ2

1
(3.3)

The above Eq.(3.3) gives the lower bound for the performance interval of weights for Ŷic(1). If the value
of population variance is not available then the usual practice is to replace it by its unbiased estimate.
Now to get the upper bound, we consider the inequality MSE(Ŷic(1)) ≤ MSE(Ŷi(2)) and solving further
we get,

MSE
(
δ1Ŷi(1) + (1 − δ1)Ŷi(2)

)
≤ MSE(Ŷi(2))

after neglecting covariance term

δ1
2MSE(Ŷi(1)) + (1 − δ1)2MSE(Ŷi(2)) ≤ MSE(Ŷi(2))

δ1
2
(
MSE(Ŷi(1)) + MSE(Ŷi(2))

)
− 2δ1MSE(Ŷi(2)) ≤ 0

δ1
2
(
MSE(Ŷi(1)) + MSE(Ŷi(2))

)
≤ 2δ1MSE(Ŷi(2)) (3.4)

On solving further, the upper limit of composite weight δ1 and its performance interval is obtained as

δ1 ≤ 2 MSE(Ŷi(2))
MSE(Ŷi(1)) + MSE(Ŷi(2))

(3.5)

After substituting the values from Eqs.(2.5) and (2.6) in Eq.(3.5) we get

δ1 ≤
2 N2

i.(1 − ni.
Ni.

) σ2
2

ni.

N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

+
[

(Ni.−ni.)2

n
+ Ni. − ni.

]
σ2

1
. (3.6)
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Now combining Eq.(3.3) and Eq.(3.6), the obtained performance interval for weight δ1 is

N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

−
[

(Ni.−ni.)2

n
+ Ni. − ni.

]
σ2

1

N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

+
[

(Ni.−ni.)2

n
+ Ni. − ni.

]
σ2

1
≤ δ1 ≤

2 N2
i.(1 − ni.

Ni.
) σ2

2
ni.

N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

+
[

(Ni.−ni.)2

n
+ Ni. − ni.

]
σ2

1
. (3.7)

In the similar way, the interval of weight for composite estimator Ŷic(2) can be obtained by
solving MSE(Ŷic(2)) ≤ MSE(Ŷi(1)) and MSE(Ŷic(2)) ≤ MSE(Ŷi(3)), Ŷic(3) by solving inequalities
MSE(Ŷic(3)) ≤ MSE(Ŷi(3)) and MSE(Ŷic(3)) ≤ MSE(Ŷi(4)) and for composite estimator Ŷic(3) by
solving MSE(Ŷic(4)) ≤ MSE(Ŷi(2)) and MSE(Ŷic(4)) ≤ MSE(Ŷi(4)) and are given as

∑
j

Nij−nij

nij
(Nij − nij + n.j) σ2

3 −
[

(Ni.−ni.)2

n + Ni. − ni.

]
σ2

1
∑

j
Nij−nij

nij
(Nij − nij + n.j) σ2

3 +
[

(Ni.−ni.)2

n + Ni. − ni.

]
σ2

1

≤ δ2 ≤

2
∑

j
Nij−nij

nij
(Nij − nij + n.j) σ2

3
∑

j
Nij−nij

nij
(Nij − nij + n.j) σ2

3 +
[

(Ni.−ni.)2

n + Ni. − ni.

]
σ2

1

(3.8)

∑
j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4 −∑j
Nij−nij

nij
(Nij − nij + n.j) σ2

3
∑

j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4 +
∑

j
Nij−nij

nij
(Nij − nij + n.j) σ2

3

≤ δ3 ≤

2
∑

j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4
∑

j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4 +
∑

j
Nij−nij

nij
(Nij − nij + n.j) σ2

3

(3.9)

and
∑

j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4 − N2
i.(1 − ni.

Ni.
) σ2

2
ni.

∑
j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4 + N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

≤ δ4 ≤
2
∑

j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4
∑

j

N2
ij

nij

(
1 − nij

Nij

)
σ2

4 + N2
i.

(
1 − ni.

Ni.

)
σ2

2
ni.

(3.10)

respectively. It should be noted that, if the component estimators are biased, the composite estimator
will have minimum MSE than either of the component estimators under these performance interval of
weights δi, i = 1, 2, 3, 4 [see Royall (1978)]. The width of these performance interval is one. However, if
the component estimators are independent and either of them is unbiased with estimable variance then
optimum value of weights can be estimated in a straightforward manner.

4 Sensitivity Interval for Weights
The optimum weights and their corresponding optimum MSE expressions involved variance and other
population parameters terms which is not known. Thus, the concept of optimality gone in such situations
and population parameter terms are replaced by their unbiased estimates to compute the weights and
MSE accordingly. Here, we considered the optimum weights δ∗

i , i = 1, 2, 3, 4 and corresponding optimum
MSE computed by Pandey and Kathuria (1995). The optimum weight and corresponding optimum MSE
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under composite model defined in Eq.(2.13) is given by

δ∗
1 = σ2

2

ni.

[(
1

ni.
+ 1

n

)
σ2

2 + (αi − ᾱ)2
] (4.1)

and MSE∗(Ŷic(1)) = (Ni. − ni.)
Ni.

ni.




(
1
n

+ 1
Ni.

)
σ2

2 + (αi − ᾱ)2

( 1
n

+ 1
ni.

)
σ2

2 + (αi − ᾱ)2


σ2

2. (4.2)

Further, the optimum weights of the model-based composite estimators defined in Eqs. (2.14), (2.15)
and (2.16) are

δ∗
2 =

∑
j

(Nij−nij)2σ2
3

n.j[∑
j (Nij − nij) (Nij−nij+n.j)

n.j
+ (Ni. − ni.) (Ni.−ni.+n)

n

]
σ2

3 +
[
(Nij − nij)

(
βj − β̄

)]2 (4.3)

δ∗
3 =

∑
j (Nij − nij)2

(
1

nij
− 1

n.j

)
σ2

4
∑

j (Nij − nij)2
(

1
nij

− 1
n.j

)
σ2

4 +
[∑

j (Nij − nij) (µij − µ̄.j)
]2 (4.4)

δ∗
4 =

∑
j (Nij − nij)
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Nij

nij
− Ni.
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)
σ2

4
∑

j (Nij − nij)
(

Nij

nij
− Ni.

ni.

)
σ2

4 + (θi − θ̄i)2
(4.5)

and their corresponding optimum MSE’s are given by

MSE∗(Ŷic(2)) =


 (Ni. − ni.) (Ni.−ni.+n)

n

∑
j

(Nij−nij)2σ2
3

n.j
+
[
(Nij − nij)

(
βj − β̄

)]2
{∑
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MSE∗(Ŷic(3)) =
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MSE∗(Ŷic(4)) =

(
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(
Ni.−ni.

ni.

))∑
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(
Nij
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− Ni.
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, (4.8)

where, θi and θ̄i are ∑j Nijµij and Ni.

ni.

∑
j Nijµij respectively. In the absence of optimum weights, the

sensitivity interval or bounds of involved weights are derived for the above composite estimators.

Let us define the proportional inflation I in the variance of the composite estimators, resulting from
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the use of some weight δ other than the optimum weight δ∗ and is given by

I =
MSE

(
Ŷic(1)

)
− MSE∗

(
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)
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Ŷi(1)

)
+ MSE

(
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where I
′ is given as
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)
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As,
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Similarly, the sensitivity interval of involved weights for other three composite estimators defined in Eqs.
(2.14), (2.15) and (2.16) are obtained as

(δ2 + δ∗
2) ≥

2MSE
(
Ŷi(3)

)

MSE
(
Ŷi(1)

)
+ MSE

(
Ŷi(3)

) (4.12)

(δ3 + δ∗
3) ≥

2MSE
(
Ŷi(4)

)

MSE
(
Ŷi(3)

)
+ MSE

(
Ŷi(4)

) (4.13)

(δ4 + δ∗
4) ≥

2MSE
(
Ŷi(4)

)

MSE
(
Ŷi(2)

)
+ MSE

(
Ŷi(4)

) (4.14)

respectively. These expressions also provide a bound for weights interlinked with optimum weights with
the availability of MSE’s or their estimates.
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5 An Empirical Study
In this section, an empirical study is carried out to evaluate the performance interval and the optimum
value of weights (δ1, δ2, δ3, δ4) for different composite estimators derived in defined in Eqs. (2.13), (2.14),
(2.15) and (2.16) under different models. For this study, a hypothetical data set is taken from the
website https://www.scribbr.com/statistics/anova-in-r/ which contains the observed yield of a crop. The
experiment is designed to observe the effect of three factors i.e. three different fertilizer (P = 1, 2, 3)
at four levels (i.e. variation in soil in four different blocks Q = 1, 2, 3, 4). Hence, the complete dataset
is divided into 4 blocks comprising 24 rows each and 3 small domains consisting 32 observations each.
The total observation consists of N = 96 units whereas each (i, j)th cell contains 8 observations i.e.
k = 1, 2, · · · , 8 for i ∈ P and j ∈ Q. The probability samples of sizes n = 20, 40, 60 are drawn
from randomly selected 5, 10 and 15 rows respectively using SRSWR sampling scheme. The values of
performance interval derived in Eqs. (3.7), (3.8), (3.9), (3.10) and optimum weights derived in Eqs.(4.11),
(4.12), (4.13), (4.14) are calculated using R-software and are presented in Table 1.
From Table 1, we can observe that the performance interval for weights at different sample sizes vary for
different composite estimators. It can be noted that, as the sample size increases, the value of optimum
weights is getting close to zero, this means there is little room for error in an estimate of the optimum
weights if the composite estimator is to outperform either component estimators. Also, the length of
sensitivity interval is obtained smallest for the large sample sizes. From Table 2, we can observe that the
calculated sensitivity interval reduced the length of obtained performance interval for all the composite
estimators, which is more reasonable and justifiable.

Sample
Ŷic(1) Ŷic(2)

Size Performance Interval δ∗
1 Performance Interval δ∗

2

20 (0.14861863, 1.14861863) 0.00003685 (0.07879330, 1.07879330) 0.000012343
40 (0.31611261, 1.31611261) 0.00001333 (0.43497616, 1.43497616) 0.000009837
60 (0.25925601, 1.25925601) 0.00000691 (0.26898933, 1.26898933) 0.000003120

Ŷic(3) Ŷic(4)

Performance Interval δ∗
3 Performance Interval δ∗

4

20 (0.93511119, 1.93511119) 0.000001312 (0.92561194, 1.92561194) 0.000000183
40 (0.72576161, 1.72576161) 0.000001825 (0.78505402, 1.78505402) 0.000000022
60 (0.84929089, 1.84929089) 0.000000244 (0.85218129, 1.85218129) 0.000000052

Table 1: Performance interval and optimum values of weights

Sample Size Ŷic(1) Ŷic(2)

20 (1.14858178, 1.14861863) (1.07878095, 1.07879330)
40 (1.31609927, 1.31611261) (1.43496633, 1.43497616)
60 (1.25924909, 1.25925601) (1.26898621, 1.26898933)

Ŷic(3) Ŷic(4)

20 (1.93510987, 1.93511119) (1.92561176, 1.92561194)
40 (1.72575979, 1.72576161) (1.78505399, 1.78505402)
60 (1.84929064, 1.84929089) (1.85218123, 1.85218129)

Table 2: Sensitivity interval of weights
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6 Conclusion
The application of composite estimators for the estimation of domain parameters is restricted because of
the problem related to the estimation of weights and its optimum value. The situation is more difficult in
the case of small area estimation using composite estimators. The work done in this article motivates the
use of composite estimators efficiently using different weighting schemes proposed under the model given
by Holt et al.(1979). It will also be very helpful to develop a small area estimation methodology based on
composite estimation along with bounds and intervals of weights which will be proven its superiority over
other constituent estimators.
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Abstract
Censoring occurs commonly in life testing experiments. This paper introduces a mixture of multiply Type-II
censoring and progressive Type-II censoring schemes, called multiply progressive Type-II censoring, for life-testing
or reliability experiments. We use the maximum likelihood method to obtain point and interval estimators of
the mean lifetime, reliability, and hazard rate under exponential distribution with this censoring scheme. We also
present the associated expressions of the expected total test time, which will be useful for experimental planning,
in case of this censoring scheme and the complete sample without censoring. Real-life example is considered to
illustrate the methods of inference developed here. A simulation study is carried out to check the performance
of the estimators as the multiply Type-II progressive censoring scheme, and the parameter vary..
Keywords: Maximum likelihood estimation, confidence interval, reliability characteristics, mean squared error,
simulation, expected test termination time.

1 Introduction
Exponential distribution plays an important role in life-testing and reliability studies. It is a very widely used
life-time model for which statistical methods were extensively developed. Many authors have contributed
to the methodology of this distribution. For example, Sukhatme [34], Epstein ([10], [9]), Epstein and
Sobel ([11], [12]), Lawless [20], Patel and Gajjar ([29], [30]), Patel ([28], [26]).

In failure data analysis, life testing experiments often deal with censored samples. An experimenter
may terminate the life test before all n units on the test fail to save time and cost. Two types of
censoring viz: Type-I censoring and Type-II censoring generally recognized. Multiply Type-II censoring is a
generalization of Type-II censoring. Multiply Type-II censored samples may arise in life testing experiments
when failure times of some units on the test were not observed due to mechanical or experimental
difficulties. Alternatively, in the situation where some units failed between two points of observation
with exact times of failure of these units unobserved. Balasubramanian and Balakrishnan [4] obtained
MLE and BLUE in the two-parameter exponential distribution. Patel [27], Patel and Patel [24], and Shah
and Patel ([33], [32]) considered the inference for exponential, Pareto, Rayleigh and geometric life-time
models under multiply Type-II censoring. They have considered the multiply Type-II censoring scheme as
follows: Suppose n items are placed on life test and only failure times of rth

1 , r
th
2 , · · · , rth

k failures are made
available for analysis, when 1 ≤ r1 ≤ r2 ≤ · · · ≤ rk ≤ n.

The other version of the multiply Type-II censoring scheme is prescribed as follows: In the life-testing
experiment with n items on the test, the first r, last s, and middle l observations are censored, and

© 2023 Author(s). (https://www.thegsa.in/).
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remaining failure times are observed (r + s + l < n). Balakrishnan [1] considered such a multiply
Type-II censoring scheme to obtain the approximate maximum likelihood estimators of location and scale
parameters of an exponential distribution. Some more references related to such multiply Type-II censoring
schemes are Fei and Cong [13], Upadhyay et al. [37], and Shah and Patel [33]. Recently, Gadhvi
[15] utilized a joint multiply Type-II censoring scheme to estimate the parameters of two exponential
distributions. Multiply Type-II censoring is a frequently practiced censoring scheme, particularly, if one
follows a Type-II censoring scheme, but since there are not enough time and human resources to record the
failure time of each subject, only several failures and the number of failures between them are recorded.
This frequently happens in follow-up studies in epidemiology and reliability, etc.

If an experimenter desires to remove live units at points other than the final termination point of a life
test, the Type-II censoring or multiply Type-II censoring scheme will not be of use to the experimenter.
Type-II censoring and multiply Type-II censoring schemes do not allow for units to be removed from the
life test before the final termination point. However, this allowance will be desirable, as in the case of
accidental breakage of test units, in which the loss of units at points other than the termination point
may be unavoidable. Intermediate removal may also be desirable when a compromise is sought between
time consumption and the observation of some extreme values. These lead us to the area of progressive
Type-II censoring. Progressive Type-II censoring schemes are also considered in clinical trials. Here, the
drop-out of patients may be caused by migration, lack of interest or by ethical decisions. These reasons
may be regarded as random withdrawals during the experiment.

Some early works on progressive censoring can be found in Cohen [7], Mann [22], and Thomas and
Wilson [35]. The statistical inference on the parameters of lifetime distributions under progressive Type-II
censoring has been studied by several authors, including Wingo [39], Cohen and Norgaard [8], Gibbons
and Vance [17], and Wong [40]. Patel and Gajjar ([29], [30]) have used k-stage grouped and ungrouped
progressive censoring schemes with changing failure rates for exponential life-time distribution. Viveros
and Balakrishnan [38] obtain exact confidence intervals for extreme value parameters and exponential
distributions based on progressively censored data. Patel and Patel [25] applied a progressive censoring
scheme in the case of a discrete life-time model. Xie et al. [42] applied a progressive Type-II censoring
scheme to derive exact inferences and obtain an optimal scheme for a simple step-stress model. Gajjar
and Patel [16] discussed estimation for a mixture of exponential distributions based on progressively
Type-II censored sample. Hofmann et al. [18] indicated that the Type-II progressive censoring schemes
significantly improve conventional Type-II censoring in many situations.

This scheme is generalized by Balakrishnan and Sandhu [3], in which, initially some failures are not
observed, then after progressive censored failure times are observed, such scheme is known as general
progressive Type-II censoring. Such a scheme is used by Fernandez [14] for an exponential life-time model.
Barot and Patel [5] have used the general progressive censoring scheme to obtain reliability indexes for
cold standby systems. Readers can refer to the book written by Balakrishnan and Aggarwala [2] for more
details on the methods and applications of progressive censoring.

By combining multiply Type-II censoring and progressive Type-II censoring schemes a scheme is
developed as a mixture of both the censoring schemes, which we shall call multiply progressive Type-
II censoring scheme.

The scheme is described as follows:
Suppose n items are placed on a life testing experiment, and first r failures are not observed.

Then (r + 1)th, (r + 2)th, · · · , lth failure times Xr+1 < Xr+2 < · · · < Xl are made available,
and at each of these failure times Rr+1, Rr+2, · · · , Rl units are removed respectively from the test
randomly from the available survival units. Then again (k − l) failures are not observed. Then after
(k + 1)th, (k + 2)th, · · · ,mth failure times Xk+1 < Xk+2 < · · · < Xm are made available and at each
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of these failure times again Rk+1, Rk+2, · · · , Rm units are removed respectively from the test, randomly
from the available survival units. Finally, the experiment is terminated at mth failure. Obviously, here
Rm = n−∑l

j=r+1 Rj −∑m−1
j=k+1 Rj −m is the remaining all survival items. As this scheme is a combination

of multiply Type-II censoring and progressive Type-II censoring schemes, it allows the experimenter to
remove units from a life test at various stages during the experiment. Hence, it becomes useful in clinical
trials and life-testing experiments. The advantage of this censoring scheme is the experimenter can decide
the value of r, l and m as a compromise between a shorter experimental time and a higher chance to
observe failures. Thus, the scheme assures us not only to get a sufficient number of observed failure times
for efficiency of statistical inference but also to control the total time on the test.

One can see that the multiply Type-II censoring is a special case of the multiply progressive Type-II
censoring when Rr+1 = Rr+2 = · · · = Rl = Rk+1 = Rk+2 = · · · = Rm−1 = 0. For r = 0, k = l and
Rr+1 = Rr+2 = · · · = Rl = Rk+1 = Rk+2 = · · · = Rm−1 = 0, the scheme reduces to ordinary Type-II
censoring scheme.

The scheme is visualized in the following figure:

Patel [25] considered multiply Type-II censoring schemes in a two-stage progressive censoring scheme
and used it for estimating the parameters of exponential model with changing failure rates. No further
work has been found on such a multiply progressive Type-II censoring scheme, which motivates us to
consider such a censoring scheme.

In this paper, we use multiply progressive Type-II data when the life time of each experimental unit
follows an exponential distribution. The aim of this paper is twofold. First, to obtain point and interval
estimates of the reliability characteristics using frequentist approach. The second aim of this paper is to
consider the expected termination time of the test when the data are multiply progressive Type-II censored.

The rest of this paper is organized as follows. Section 2 presents the multiply progressively Type-II
censoring scheme and the likelihood function. Section 3 is concerned with maximum likelihood (ML)
estimation. The asymptotic property of the ML estimator is considered. The confidence interval for
the parameter based on the ML estimator is derived. In Section 4, the expected test termination time
is derived and compared it with the expected test termination time obtained under the complete sample
without censoring. Numerical studies and conclusion are presented in Section 5. Section 6 gives simulation
studies. The paper is concluded in Section 7.

2 Model
Suppose that the life-time X of a unit is assumed to follow an exponential distribution Exp (θ) with mean
θ > 0. The probability density function and cumulative distribution function are given, respectively as

f(x, θ) = 1
θ

exp(−x/θ) (1)

and

F (x, θ) − 1 − exp(−x/θ), x > 0, θ > 0. (2)
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The reliability function and hazard function of the distribution are obtained, respectively as

R(t) = exp(−t/θ) (3)
and

h(t) = 1/θ, t > 0. (4)
Suppose that n randomly selected units from an Exp (θ) population, θ being unknown, are put on test

under a multiply progressive Type-II censoring scheme as discussed in Section 1. The likelihood function
of θ is then

L = C [F (xr+1)]r
l∏

i=r+1

[
f(xi) {1 − F (xi)}Ri

]
[F (xk+1) − F (xl)]k−l

m∏

i=k+1

[
f(xi) {1 − F (xi)}Ri

]
(5)

where constant

C =
(
n
r

)
(n− r)

l∏

j=r+2


n−

j−1∑

i=r+1
Ri − j + 1



(
n− l
k − l

)
(n− k)

m∏

j=k+2


n−

j−1∑

i=k+1
Ri − j + 1




By (1) and (2), the likelihood becomes

L = C (1 − exp(−xr+1/θ))r
l∏

i=r+1

[1
θ

exp(−xi/θ)(exp(−xi/θ))Ri

]
×

[exp(−xl/θ) − exp(−xk+1/θ)]k−l
m∏

i=k+1

[1
θ

exp(−xi/θ)(exp(−xi/θ))Ri

]

= Cθ−(l−r+m−k) exp {−T/θ} (1 − exp (−(xk+1 − xl)/θ))k−l (1 − exp (−(xr+1/θ)))r (6)

where,

T =
l∑

i=r+1
xi(1 +Ri) +

m∑

i=k+1
xi(1 +Ri) + (k − l)xl

3 Maximum Likelihood Estimation
The maximum likelihood estimator (MLE) of θ, denoted by θ̂ can be obtained by solving the equation

∂ logL
∂θ

= 0, provided ∂2 logL
∂θ2 < 0 (7)

Using (6)

LogL = logC − (l − r +m− k) log θ − (T/θ) + (k − l) log{1 − exp (−(xk+1 − xl)/θ)}
+r log{1 − exp (−(xr+1/θ))}

∂ logL
∂θ

= −(l − r +m− k)
θ

+ T

θ2 −
(
k − l

θ2

)
(xk+1 − xl) exp(−(xk+1 − xl)/θ)

1 − exp(−(xk+1 − xl)/θ)

+
(
r

θ2

)
xr+1 exp(−xr+1/θ)
1 − exp(−xr+1/θ)

(8)

86



Gujarat Journal of Statistics and Data Science Vol. 39, pp. 83–99, 2023

From (7) and (8) we have the likelihood equation

θ =
T − (k−l)(xk+1−xl) exp(−(xk+1−xl)/θ)

1−exp(−(xk+1−xl)/θ) − rxr+1 exp(−xr+1/θ)
1−exp(−xr+1/θ)

l − r +m− k
(9)

= ψ(θ), a function of θ

From equation (9), the MLE of θ can be obtained by using some suitable numerical iterative procedure
such as the Newton-Raphson method.

From the MLE of θ, one can obtain the MLE of reliability and hazard function at time t as

R̂(t) = exp(−t/θ̂) (10)

ĥ(t) = 1/θ̂ (11)
The Fisher information contained about θ is given by

Ix(θ) = E(−∂2 logL
∂θ2 ) (12)

where

∂2 logL
∂θ2 = l − r +m− k

θ2 − 2T
θ3 + 2(k − l)(xk+1 − xl) exp(−(xk+1 − xl)/θ)

θ3{1 − exp(−(xk+1 − xl)/θ)}

−(k − l)(xk+1 − xl)2 exp(−(xk+1 − xl)/θ)
θ4{1 − exp(−(xk+1 − xl)/θ)}2 + 2rxr+1 exp(−(xr+1/θ))

θ3{1 − exp(−(xr+1/θ))}

− rx2
r+1 exp(−xr+1/θ)

θ4{1 − exp(−xr+1/θ)}2 . (13)

The exact expression for the expectation of the above is difficult to obtain. However, in practice, we
would need the estimate of variance, for which, Cohen [6] recommended it using the approximation

E(−∂2 logL
∂θ2 ) ≈ −∂2 logL

∂θ2

]

θ=
⌢

θ

(14)

Proposition: Asymptotically θ̂ has a normal distribution with mean θ and variance

1/E(−∂2 logL
∂θ2 ).

One may refer to Kendall and Stuart [19] or Rao [31] for the proof.
Thus, the asymptotic variance of MLE of reliability and hazard function at time t can be obtained

respectively as

V (R̂(t)) =
(
∂R(t)
∂θ

)2

V (θ̂)



θ=θ̂

= exp(−2t/θ) t
2

θ4V (θ̂)
]

θ=θ̂

(15)
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and

V (ĥ(t)) =
(
∂h(t)
∂θ

)2

V (θ̂)



θ=θ̂

= V (θ̂)
θ4




θ=θ̂

(16)

where

V (θ̂) = 1
E
(

−∂2LogL
∂θ2

) (17)

In order to examine the existence of MLE, we have considered the second derivatives and observed that
the second derivatives at the solution of the likelihood equation is negative which is verified by utilizing
Visual Basic programming. Hence, standard errors of MLEs of reliability characteristics are calculated and
shown in Section 5 and in Section 6.

Note that in the case of a complete sample, the MLE of the parameter θ is the sample mean x, and
its variance is θ2/n.

The (1-α)100% asymptotic confidence interval for θ can be developed as

θ̂ ∓ Zα/2

√
V (θ̂) (18)

where Zα/2 is the upper (α/2)th-percentile of standard normal distribution.
For various sample sizes and censoring schemes, the standard errors are compared with that of based

on a complete sample by using a simulation study in Section 5.

4 Expected Test Termination Time
For certain types of censoring schemes, such as, Type-II censoring, multiply Type-II censoring, progressive
Type-II censoring, and multiply progressively Type-II censoring schemes, the test termination time is not
fixed. In practical applications, it is often useful to have an idea of the duration of a time of whole life
test. Therefore, it is important to compute the expected time required to complete a life test.

Tse and Yuen [36] computed the expected experiment times for the lifetimes of Weibull distributed
under Type-II progressive censoring with random removals. Wu and Chang [41] described a comparison
of the expected test termination time of the test based on exponential progressive Type-II censored data
with random removals and tests based on uncensored complete sample data. Lin et al. [21] obtained the
expected total test time based on Type-II progressively hybrid censored data with Weibull lifetimes.

This section we will present the expressions of the expected total test times (ETT) under progressive
Type-II censoring and a complete sample without censoring. For progressively Type-II censoring, the ETT
for the experiment is given by the expectation of the mth order statistic Xm. We consider the following
theorem to derive an explicit expression for the expectation of Xm,

Theorem 1. Let {Xr+1, Xr+2, · · · , Xl, Xk+1, Xk+2, · · · , Xm} denote a multiply progressive Type-II
censored sample (ordered failure times) with censoring scheme (Rr+1, Rr+2, · · · , Rl, Rk+1, Rk+2, · · · , Rm).
The generalized spacing
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Zr+1 = (n− r)Xr+1

Zr+2 = (n− r −Rr+1 − 1)(Xr+2 −Xr+1)
Zl = (n− r −Rr+1 −Rr+2 − · · · −Rl−1 − l + r + 1)(Xl −Xl−1)

... ...

Zk+1 = (n−
l∑

j=r+1
Rj − k)Xk+1

Zk+2 = (n−
l∑

j=r+1
Rj − k −Rk+1 − 1)(Xk+2 −Xk+1)

... ...

Zm = (n−
l∑

j=r+1
Rj − k −

m−1∑

j=k+1
Rj −m+ k + 1)(Xm −Xm−1)

are independent random variables with Zr+2, · · · , Zl, Zk+1, · · · , Zm being exponential variates with
mean θ and Zr+1

n−r
= Xr+1 being (r+1)th usual order statistic from a sample of size n from the exponential

distribution with mean θ. Zk+1

n−
∑l

j=r+1 Rj−k
= Xk+1 being distributed as (k+ 1)th usual order statistic after

lth order statistic from exponential distribution with mean θ.

The proof can be developed in a similar manner from Theorem 2.6 and Theorem 3.4, given by
Balakrishnan and Aggarwala [2].

Here we can write
Xm = Xr+1 + (a linear combination of independent exponential random variables Zr+2 to Zl) +
Xk+1 + (a linear combination of independent exponential random variables Zk+2 to Zm).
Hence, we have the following results:

E(Xr+1) = θ
r+1∑

i=1

1
n− i+ 1

E(Xj) = E(Xr+1) + θ
j∑

i=r+2

1
n−∑i−1

w=r+1 Rw − (i− 1)
for j = r + 2, r + 3, · · · , l

E(Xk+1) = E(Xl) + θ
k+1∑

i=r+1

1
n−∑l

w=r+1 Rw − (i− 1)

E(Xj) = E(Xk+1) + θ
j∑

i=k+2

1
n−∑l

w=r+1 Rw −∑i−1
w=k+1 Rw − (i− 1)

for j = k + 2, k + 3, · · · ,m.

Thus, the expected test termination time E(Xm) becomes

E(Xm) = θ




∑r+1
i=1

1
n−i+1 +∑l

i=r+2
1

n−
∑i−1

w=r+1 Rw−i+1
+∑k+1

i=l+1
1

n−
∑l

w=r+1 Rw−i+1
+

∑m
i=k+2

1
n−
∑l

w=r+1 Rw−
∑i−1

w=k+1 Rw−i+1


 (19)

The expected test termination time in case of a complete sample reduces to
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E(Xn) = θ
n∑

i=1

1
n− i+ 1 (20)

To compare them, we compute the ratio of the two expected test termination times given in (19) and
(20), which is defined as

RETT = E(Xm) under MPC for a sample of size n
E(Xn) under complete sampling for a sample of size n (21)

Here RETT does not depend on the parameter θ. Suppose that an experimenter wants to observe
the failure of at least l − r +m− k units when the test is considered under multiply progressive Type-II
censoring, then the RETT provides important information in determining whether the test termination
time can be shortened significantly if a much larger sample of n units is used and the test is stopped
at mth failure observed in multiply progressive Type-II censoring. It is obvious that comparing these two
expected test times analytically is very difficult. So, we will be calculating them numerically for various
values of n,m, l, r, and k.

In the next section the simulation study is carried out to compute RETT for different sample sizes and
censoring schemes.

5 Real example
Nelson ([23], 105, Table 1.1) presents the time to breakdown of an insulating fluid between electrodes at
a voltage of 34 KV (minutes) for 19 specimens. As a numerical illustration, we have generated a multiply
progressive Type-II censored sample of a lifetime based on this data set, for which exponential distribution
appears to be adequate. The generated data is presented below with the censoring pattern.

Multiply progressively Type-II censored sample:

i 1 2 3 4 5 6 7 8 9 10 11 12
xi - - 0.96 2.78 3.16 4.15 - 6.50 8.01 8.27 31.75 33.91
Ri - - 1 0 0 1 - 1 0 1 1 2

As per our notations here n = 19, r = 2, l = 6, k = 7 and m = 12.
The maximum likelihood estimates of θ, R(t), and h(t) along with their standard errors(SE) and 95%

confidence intervals(CI) are obtained as follow:

Reliability characteristics MLE Standard error 95% confidence interval
θ 6.92288 1.99904 (3.00476, 10.84100)

R(t = 1.5) 0.80519 0.05038 (0.70645, 0.90393)
h(t) 0.14445 0.04171 (0.06270, 0.22620)

Table 1: MLE, standard error and confidence interval for reliability characteristics

The expected test termination time under multiply censoring is 9.51293, whereas based on the complete
sample, it is 24.56058, and RETTT = 0.38733.

Here we note that the expected test termination time under multiply censoring is smaller than that of
under a complete sample.
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6 Simulation
In this section, we present some experimental results, mainly to observe how the different methods behave
for different sample sizes and for different censoring schemes. Maximum likelihood estimators for reliability
characteristics like mean life-time, reliability at time t = 1.5, and hazard rate are computed along with
their standard errors. 95% confidence intervals for the three reliability characteristics are also obtained.
We compare the performances of the estimators under different cases with respect to their MSEs. We
also compare the expected test termination time under different censoring schemes and under a complete
sample. All the experiments have been performed on a Window 7 PC using Visual Basic.

We consider the value of parameter θ = 1.5,m = (12, 15, 18) for sample size n = 20 (i.e. 60%,
75% and 90% of n) and m = (12, 15, 20, 25) for sample size n = 30 ( i.e. 40%, 50%, 70% and 85%
of n). Several combinations of r, l and k are considered appropriately as per the selected value of m.
Different progressive censoring schemes with the two extreme censoring schemes of (0m−1, n − m) and
(n − m, 0m−1) are included in every case. The censoring schemes with withdrawals at early stages of
failures, at later stages of failures, and withdrawals alternatively at failure stages are also considered. For
simplicity in notation, we have used the notation as (03, 20) for the progressive censoring scheme (0, 0,
0, 20). For usual Type-II censoring, the censoring scheme will be (0m−1, n−m). In order to evaluate the
effect of differing levels of censoring as compared to the two extreme censoring schemes, some specifically
chosen progressive censoring schemes are also included.

For each case, we simulated 1000 progressively Type-II censored samples from the exponential lifetime
distribution with mean θ. To generate a sample based on multiply progressive Type-II censoring described
in the Section 1, the following algorithm is used.

1 Simulate r + 1 independent exponential variates Z1, Z2, · · · , Zr+1 with mean θ.

2 Set Xr+1 = ∑r+1
i=1

Zi

n−i+1

3 Simulate l-r-1 independent exponential variates Zr+2, Zr+3 , . . . , Zl with mean θ.

4 Set Xs = Xr+1 +∑s
j=r+2

Zj

n−
∑j−1

i=r+1 Ri−j+1
, s = r + 2, r + 3, · · · , l

5 Simulate Zl+1, Zl+2, · · · , Zk+1 exponential variates with mean θ.

6 Set Xs = Xk+1 +∑s
j=k+2

Zj

n−
∑l

w=r+1 Rw−
∑j−1

w=k+1 Rw−j+1
, s = k + 2, k + 3, · · · ,m

Then {Xr+1, Xr+2, · · · , Xl, Xk+1, Xk+2, · · · , Xm} is the required multiply progressive Type-II right
censored sample from the exponential distribution with mean θ, θ > 0.

Table 2-5 report the average values of the 1000 simulated results. Expected test termination time
under the different censoring schemes and for the complete sample are shown in Table 6 and Table 7.
Conclusions are made from these tables.

From the results obtained in Table 2 to 5, we observe the following conclusions.
The maximum likelihood estimates of reliability characteristics are quite closed to their actual values

under multiply progressive Type-II censoring, usual Type-II censoring and complete sample schemes.
For a given value of n, the standard error and length of the asymptotic confidence interval decrease

as m or the observed number of failures (l − r +m− k) increases.
The comparison of estimators obtained under different censoring schemes may not be highly justified.

MSE and length of confidence interval do not change much with a change in the censoring schemes for
a fixed number of observed life times. But the withdrawals made at early stages of failures increase the
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r, l, k,m Scheme Parameter MLE SE CI
Complete sample θ 1.48304 0.33974 (0.81715, 2.14893)

2,6,7,12 (04,14,4) θ 1.47991 0.44459 (0.60851, 2.35131)
R(t) 0.36292 0.11051 (0.14632, 0.57951)
h(t) 0.67572 0.20300 (0.27784, 1.07359)

(04, 03,8,0) θ 1.47991 0.44459 (0.60851, 2.35131)
R(t) 0.36292 0.11051 (0.14324, 0.57951)
h(t) 0.67572 0.20300 (0.27784, 1.07359)

(8,07) θ 1.48010 0.44490 (0.60810, 2.35210)
R(t) 0.36297 0.11057 (0.14625, 0.57968)
h(t) 0.67563 0.20308 (0.27758, 1.07367)

(1,0,1,0,1,0,1,0,4) θ 1.47993 0.44461 (0.60848, 2.35137)
R(t) 0.36293 0.11051 (0.14632, 0.57953)
h(t) 0.67571 0.20300 (0.27782, 1.07360)

Type-II, m= 12 (011,8) θ 1.47990 0.44443 (0.60882, 2.35099)
R(t) 0.36292 0.11047 (0.14640, 0.57944)
h(t) 0.67572 0.20293 (0.27799, 1.07345)

2,7,9,15 (1,0,1,02,1,02,1,0,1) θ 1.47707 0.39433 (0.70419, 2.24996)
R(t) 0.36221 0.09820 (0.16974, 0.55468)
h(t) 0.67701 0.18074 (0.32276, 1.03127)

(02,2, 03,2,03,1) θ 1.47707 0.39433 (0.70419, 2.24996)
R(t) 0.36221 0.09820 (0.16974, 0.55468)
h(t) 0.67701 0.18074 (0.32276, 1.03127)

(5,010) θ 1.47701 0.39458 (0.70365, 2.25038)
R(t) 0.36220 0.09827 (0.16960, 0.55480)
h(t) 0.67704 0.18087 (0.32254, 1.03154)

(08,5,02) θ 1.47711 0.39426 (0.70436, 2.24986)
R(t) 0.36222 0.09818 (0.16979, 0.55466)
h(t) 0.67700 0.18070 (0.32282, 1.03117)

Table 2: Averaged values of MLE, SE and CI for reliability characteristics (n=20)

standard error as well as the length of the confidence interval, compared to the withdrawals at some last
stages of failures.

From the results presented in Table 6 and 7, we notice the following:
For given values of n and m, the expected test termination time is much smaller in the case of multiply

progressive Type-II censoring for all types of censoring schemes compared to the test based on a complete
sample. That is though MSE is smaller in the case of the test based on a complete sample compared
to a multiply Type-II progressive censoring scheme, the experimenter should prefer to multiply Type-II
progressive censoring, if he wants to decrease the time of the test and hence cost of the experiment.

RETT increased rapidly and approached to 1 for withdrawals at early stages of failures compared to
the withdrawals at some later stages of failures. It suggests that there is not much gain in shortening the
experiment time in these cases compared to the test based on a complete sample.

The choice of higher withdrawals at later stages of failures gives a smaller expected test termination
time compared to the other types of withdrawals.

As m increases, the expected test termination time gradually increases for multiply Type-II progressive
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r, l, k,m Scheme Parameter MLE SE CI
Complete sample θ 1.48304 0.33974 (0.81715, 2.14893)

2,6,7,15 (07,15) θ 1.47746 0.39422 (0.70479, 2.25012)
R(t) 0.36231 0.09815 (0.16994, 0.55468)
h(t) 0.67684 0.18060 (0.32287, 1.03081)

(1,0,1,0,1,0,1,04, 1) θ 1.47747 0.39423 (0.70477, 2.25017)
R(t) 0.36231 0.09815 (0.16994, 0.55469)
h(t) 0.67683 0.18060 (0.32286, 1.03081)

(010,5,0 ) θ 1.47746 0.39422 (0.70479, 2.25012)
R(t) 0.36231 0.09815 (0.16994, 0.55468)
h(t) 0.67684 0.18060 (0.32287, 1.03081)

(5,011) θ 1.47751 0.39428 (0.70471, 2.25030)
R(t) 0.36232 0.09816 (0.16993, 0.55471)
h(t) 0.67682 0.18061 (0.32282, 1.03082)

Type-II, m = 15 (014,5) θ 1.47746 0.39410 (0.70502, 2.24990)
R(t) 0.36231 0.09812 (0.17000, 0.55462)
h(t) 0.67684 0.18054 (0.32298, 1.03070)

1,7,8,18 (1,05,1,09) θ 1.47779 0.35783 (0.77644, 2.17915)
R(t) 0.36239 0.08907 (0.18782, 0.53697)
h(t) 0.67668 0.16385 (0.35553, 0.99783)

(1, 014, 1) θ 1.47779 0.35783 (0.77644, 2.17915)
R(t) 0.36239 0.08907 (0.18782, 0.53697)
h(t) 0.67668 0.16385 (0.35553, 0.99783)

(06,2,09) θ 1.47779 0.35780 (0.77645, 2.17914)
R(t) 0.36239 0.08907 (0.18782, 0.53697)
h(t) 0.67668 0.16385 (0.35553, 0.99783)

Type-II, m = 18 (017,2) θ 1.47781 0.35780 (0.77652, 2.17910)
R(t) 0.36240 0.08906 (0.18784, 0.53695)
h(t) 0.67668 0.16383 (0.35556, 0.99779)

Table 3: Averaged values of MLE, SE and CI for reliability characteristics (n = 20).

censoring schemes, which must be true.
The expected test termination time under the usual Type-II censoring scheme is smaller than that of

under a multiply Type-II progressive censoring scheme, and the test is based on a complete sample.

7 Conclusion
In this paper, we discussed multiply progressive Type-II censoring schemes and discussed the statistical
inference based on exponential life-time data. We compared the performance of MLE of the reliability
characteristics and expected test termination time for the exponential life-time model when the data are
multiply progressive Type-II censored. The biases of MLE of the reliability characteristics are smaller for
all types of censoring schemes of multiply progressive Type-II censoring as well as for the test based on
a complete sample. The standard errors as well as lengths of the confidence intervals decrease for the
censoring schemes with withdrawals at some last stages of failures compared to the early stages of failures.
One important point that should be mentioned here is that, though MSE is smaller in the case of a test
based on a complete sample, ETT is much smaller in the case of multiply progressive Type-II censoring
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r, l, k,m Scheme Parameter MLE SE CI
Complete sample θ 1.48264 0.27521 (0.94323, 2.02206)

2,6,7,12 (04,14,14) θ 1.49609 0.44962 (0.61483, 2.37735)
R(t) 0.36692 0.11056 (0.15022, 0.58362)
h(t) 0.66841 0.20088 (0.27469, 1.06213)

(8,07,10) θ 1.49612 0.44965 (0.61480, 2.37743)
R(t) 0.36693 0.11056 (0.15022, 0.58363)
h(t) 0.66834 0.20088 (0.27467, 1.06213)

(14,04 ,14) θ 1.49601 0.44963 (0.61482, 2.37738)
R(t) 0.36692 0.11056 (0.15022, 0.58362)
h(t) 0.66841 0.20088 (0.27468, 1.06213)

(2,0,2,0,2,0,2,0,10) θ 1.49607 0.44963 (0.61482, 2.37738)
R(t) 0.36692 0.11056 (0.15022, 0.58362)
h(t) 0.66841 0.20088 (0.27468, 1.06213)

Type-II, m = 12 (011,18) θ 1.49617 0.44961 (0.61494, 2.37741)
R(t) 0.36694 0.11055 (0.15026, 0.58362)
h(t) 0.66837 0.20085 (0.27470, 1.06204)

2,6,7,15 (07,14,11) θ 1.48951 0.39731 (0.71077, 2.26824)
R(t) 0.36530 0.09813 (0.17297, 0.55763)
h(t) 0.67136 0.17908 (0.32036, 1.02236)

(1,0,1,0,1,0,1,04,11) θ 1.48951 0.39732 (0.71077, 2.26825)
R(t) 0.36530 0.09813 (0.17297, 0.55763)
h(t) 0.67136 0.17908 (0.32036, 1.02236)

(010,5,10 ) θ 1.48951 0.39731 (0.71077, 2.26824)
R(t) 0.36530 0.09813 (0.17297, 0.55763)
h(t) 0.67136 0.17908 (0.32036, 1.02236)

(34,07,3) θ 1.48955 0.39735 (0.71074, 2.26837)
R(t) 0.36531 0.09813 (0.17297, 0.55765)
h(t) 0.67134 0.17909 (0.32033, 1.02235)

(15,011,) θ 1.48959 0.39740 (0.71069, 2.26849)
R(t) 0.36532 0.09814 (0.17296, 0.55767)
h(t) 0.67133 0.17910 (0.32023, 1.02236)

Type-II, m = 15 (014,15) θ 1.48958 0.39731 (0.71085, 2.26832)
R(t) 0.36532 0.09812 (0.17300, 0.55763)
h(t) 0.67133 0.17906 (0.32037, 1.02229)

Table 4: Averaged values of MLE, SE and CI for reliability characteristics (n = 30).
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r, l, k, m Scheme Parameter MLE SE CI
Complete sample θ 1.48264 0.27521 (0.94323, 2.02206)

2,8,10,20 (13, 03,13,06,4) θ 1.48628 0.34085 (0.81822, 2.15434)
R(t) 0.36450 0.08436 (0.19915, 0.52985)
h(t) 0.67282 0.15430 (0.37040, 0.97525)

(010, 25,0) θ 1.48629 0.34084 (0.81825, 2.15433)
R(t) 0.36450 0.08436 (0.19916, 0.52984)
h(t) 0.67282 0.15429 (0.37041, 0.97523)

(10,014,0) θ 1.48624 0.34093 (0.81802, 2.15446)
R(t) 0.36450 0.08438 (0.19910, 0.52988)
h(t) 0.67284 0.15434 (0.37033, 0.97535)

Type-II m = 20 (019,10) θ 1.48644 0.34081 (0.81844, 2.15444)
R(t) 0.36454 0.08434 (0.19932, 0.52985)
h(t) 0.67275 0.15425 (0.37042, 0.97508)

1,9,12,25 (2,07,2,011,1) θ 1.48565 0.30321 (0.89137, 2.07993)
R(t) 0.36434 0.07508 (0.21799, 0.51149)
h(t) 0.67311 0.13737 (0.40385, 0.94236)

(5,020) θ 1.48564 0.30325 (0.89127, 2.08001)
R(t) 0.36434 0.07509 (0.21717, 0.51151)
h(t) 0.67311 0.13740 (0.40382, 0.94241)

(06,12,011,1,2) θ 1.48565 0.30321 (0.89137, 2.07993)
R(t) 0.36434 0.07508 (0.21719, 0.51149)
h(t) 0.67311 0.13737 (0.40385, 0.94236)

Type-II m = 25 (024,5) θ 1.48571 0.30311 (0.89161, 2.07981)
R(t) 0.36436 0.07505 (0.21726, 0.51146)
h(t) 0.67308 0.13732 (0.40393, 0.94223)

Table 5: Averaged values of MLE, SE and CI for reliability characteristics (n = 30).
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r, l, k,m Scheme E(Xm) E(Xn) RETT
2,6,7,12 (04,14,4) 1.53823 5.32432 0.28891

(07, 8,0) 2.61762 5.32432 0.49163
(8,07) 4.42129 5.32502 0.83029

(1,0,1,0,1,0,1,0,4) 1.68903 5.32439 0.31723
Type-II, m= 12 (011,8) 1.30214 5.32431 0.24457

2,6,7,15 (07,15) 2.67484 5.31550 0.50322
(1,0,1,0,1,0,1,04, 1) 3.28682 5.31555 0.61834

(010,5,0 ) 3.17319 5.31550 0.59697
(5,011) 4.81873 5.31568 0.90651

2,7,9,15 (1,0,1,02,1,02,1,0,1) 3.09076 5.31412 0.58161
(02,2, 03,2,03,1) 3.15789 5.31412 0.59763

(5,010) 4.81713 5.31391 0.90651
(08,5,02) 3.69999 5.31425 0.69624

Type-II, m=15 (014,5) 1.94199 5.31553 0.36539
1,7,8,18 (1,05,1,09) 5.08684 5.31672 0.95676

(1, 014, 1) 3.75682 5.31672 0.70661
(06,2,09 ) 5.03461 5.31674 0.94694

Type-II, m=18 (017,2) 3.10006 5.31679 0.58307

Table 6: Expected test termination time for different censoring schemes and complete sample and their ratio
for n = 20.

r, l, k, m Scheme E(Xm) E(Xn) RETT
2,6,7,12 (04,14,14) 0.79280 5.97685 0.13264

(8,07,10) 1.08065 5.97697 0.18080
(14,04 ,14) 0.86069 5.97690 0.14400

(2,0,2,0,2,0,2,0,10) 0.95579 5.97690 0.15991
Type-II, m=12 (011,18) 0.74791 5.97720 0.12513

2,6,7,15 (07,14,11) 1.07254 5.95056 0.18024
(1,0,1,0,1,0,1,04, 11) 1.17311 5.95058 0.19714

(010,5,10 ) 1.05035 5.95056 0.17651
(34,07,3) 2.27540 5.95075 0.38237
(15,011) 4.77672 5.95088 0.80269

Type-II, m=15 (014,15) 1.00809 5.95086 0.16940
2,8,10,20 (13, 03,13,06,4) 2.33922 5.93766 0.39396

(010, 25,0) 3.33900 5.93770 0.56234
(10,014,0) 5.26587 5.93751 0.88688

Type-II, m=20 (019,10) 1.58458 5.93832 0.26684
1,9,12,25 (2,07,2,011,1) 4.13626 5.93516 0.69691

(5,020) 5.63486 5.93511 0.95172
(06,12,011,1,2) 3.19346 5.93516 0.53806

Type-II, m=25 (024,5) 2.54302 5.93540 0.42845

Table 7: Expected test termination time for different censoring schemes and complete sample and their ratio for n
= 30.
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for all the types of censoring schemes. This is definitely one major advantage of a multiply progressive
Type-II censoring scheme for saving time and cost of the experiment.

From this study, once again, we can see that there is always a trade-off between (i) total time on the
test, (ii) saving experimental units, and (iii) efficiency in estimation. The computation formulas and results
provided in this paper give a guideline on planning an experiment to compromise these three concerns.
Further investigation on obtaining optimal censoring schemes for given values (n, r, l, k,m) would be of
interest in experimental planning.
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Abstract
In this paper, a modified calibration estimator for the population mean in stratified random sampling using log
mean of the auxiliary variable has been derived, and the result so obtained is being extended in case of stratified
double sampling. The simulation study is carried out to check the performance of the suggested estimators
over the existing estimators based on the generated artificial population. The result reveals that the proposed
estimators are more efficient as compared with the estimator given by [9], [10] and [12].
Keywords: Auxiliary Information, Calibration Estimation, Stratified Sampling, Stratified Double Sampling, Log,
Mean.

1 Introduction
In the recent years, the calibration estimation has become very popular. It is defined as a technique for
adjusting weights for estimating population parameters based on auxiliary information in survey sampling.
Calibration Estimation has gained prominence after Deville and Sarndal (1992) defined the calibration
estimation as a procedure of minimizing a distance function subject to calibration constraints. Following
[2], many other researchers such as [5], [11], [6], [8], [7], [1], [3], [4], etc, have defined calibration
estimators using different calibration constraints under various sampling schemes.

The purpose of this study is to define a new calibration estimator for population mean using log
function of mean of the auxiliary variable as a calibration constraint, under stratified and stratified double
random sampling schemes. The simulation study has been presented and the results of the proposed
estimator in comparison with the estimators suggested by [10] and [12] based on the artificial datasets is
generated from exponential and Chi-square distributions.

Singh, Horn and Yu (1998)
The calibration estimator for population mean Ȳ under stratified random sampling given by [9] is

ȳsh =
L∑

h=1
Ωhȳh (1)

where Ωh are the new calibrated weights obtained by minimizing the Chi-square distance measure
L∑

h=1

(Ωh−Wh)2

QhWh
, subject to the calibration constraint:

L∑

h=1
Ωhx̄h =

L∑

h=1
WhX̄h (2)

© 2023 Author(s). (https://www.thegsa.in/).
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where

Ωh = Wh + (WhQhx̄h)




(
L∑

h=1
WhX̄h −

L∑
h=1

Whx̄h)

(
L∑

h=1
WhQhx̄2

h)


 (3)

Singh (2003)
Similarly the calibration estimator for population mean Ȳ under stratified random sampling given by [10]
is

ȳs =
L∑

h=1
Ωhȳh (4)

subject to the two calibration constraints:
L∑

h=1
Ωh = 1 (5)

L∑

h=1
Ωhx̄h =

L∑

h=1
WhX̄h (6)

Minimization of Chi-square distance measure, given by [10] subject to the calibration constraints as
mentioned above, the calibrated weight is given as:

Ωh = Wh +




(WhQhx̄h)(
L∑

h=1
WhQh) − (WhQh)(

L∑
h=1

WhQhx̄h)

(
L∑

h=1
WhQhx̄2

h)(
L∑

h=1
WhQh) − (

L∑
h=1

WhQhx̄h)2


 (X̄ −

L∑

h=1
Whx̄h) (7)

Tracy, Singh and Arnab (2003)
The calibration estimator for population mean Ȳ under the stratified random sampling defined by [12] is
given as:

ȳtr =
L∑

h=1
Ωhȳh (8)

subject to the two calibration constraints:
L∑

h=1
Ωhx̄h =

L∑

h=1
WhX̄h (9)

L∑

h=1
Ωhs2

hx =
L∑

h=1
WhS2

hx (10)

Minimizing Chi-square distance measure, given by [12] subject to the calibration constraints as
mentioned above, the calibrated weights are obtained as:

Ωh = Wh + WhQhx̄h

(
L∑

h=1
WhQhs4

hx)(
L∑

h=1
Wh(X̄h − x̄h)) − (

L∑
h=1

WhQhx̄hs2
hx)(

L∑
h=1

Wh(S2
hx − s2

hx))

(
L∑

h=1
WhQhs4

hx)(
L∑

h=1
WhQhx̄2

h) − (
L∑

h=1
WhQhx̄hs2

hx)2

+ WhQhs2
hx

(
L∑

h=1
Wh(S2

hx − s2
hx))(

L∑
h=1

WhQhx̄2
h) − (

L∑
h=1

WhQhx̄hs2
hx)(

L∑
h=1

Wh(X̄h − x̄h))

(
L∑

h=1
WhQhs4

hx)(
L∑

h=1
WhQhx̄2

h) − (
L∑

h=1
WhQhx̄hs2

hx)2

(11)
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2 Proposed Calibration Estimator
Calibration Estimator under Stratified Sampling
Considering the population of size N which has been divided into L homogeneous subgroups called strata
consisting of Nh units in hth stratum such that

L∑
h=1

Nh = N . A sample of size nh is drawn from the
hth stratum using Simple Random Sampling Without Replacement (SRSWOR), where n is the required
sample size, and

L∑
h=1

nh = n.
Suppose yhi and xhi is the ith unit of the study and auxiliary variables, respectively, in the hth stratum

for i= 1, 2, ..., nh and h = 1, 2, . . . , L.
L∑

h=1
Wh = Nh

N
is the stratum weight and

L∑
h=1

fh = nh

N
is the sample

fraction.
The proposed calibration estimator for stratified random sampling using log of mean is given as

ȳL =
L∑

h=1
Ωhȳh (12)

where the calibration weights are such chosen in order to minimize the Chi-square distance measure
given as

L∑

h=1

(Ωh − Wh)2

WhQh

(13)

subject to the following calibration constraint
L∑

h=1
Ωh log x̄h =

L∑

h=1
Wh log X̄h (14)

The Lagrange function is given as

L =
L∑

h=1

(Ωh − Wh)2

WhQh

− 2λ(
L∑

h=1
Ωh log x̄h −

L∑

h=1
Wh log X̄h) (15)

where λ is the Lagrange’s multiplier. To find the optimum value of Ωh we differentiate the Lagrange
function given in equation (15) with respect to Ωh and equate it to zero. Thus the calibration weight is
obtained as

Ωh = Wh + λ(WhQh log x̄h). (16)
Here λ is determined by substituting the value of Ωh from equation (16) to equation (14), so this

leads to a calibrated weight as

Ωh = Wh + (WhQh log x̄h)




(
L∑

h=1
Wh(log X̄h − log x̄h))

(
L∑

h=1
WhQh(log x̄h)2


 (17)

Thus, on substituting the value of Ωh from equation (17) in equation (12), we get the proposed
calibrated estimator as

ȳL =
L∑

h=1
Whȳh + β̂L

[
L∑

h=1
Wh(log X̄h − log x̄h)

]
(18)
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where

β̂L =




(
L∑

h=1
WhQh log x̄hȳh)

(
L∑

h=1
WhQh(log x̄h)2


 (19)

Calibration Estimator under Stratified Double Sampling
The result attained above is now extended in case of stratified double sampling. For this scheme a
preliminary sample of size mh units as a first phase sample is drawn by using SRSWOR and a subsample
of nh units is drawn from the preliminary sample of size mh units by SRSWOR. Let x̄∗

h = 1
mh

mh∑
i=1

xhi be

the first phase sample mean and x̄h = 1
nh

nh∑
i=1

xhi and ȳh = 1
nh

nh∑
i=1

yhi are the second phase sample means
of auxiliary variable and study variable, respectively. Thus, the proposed calibration estimator in case of
stratified double sampling are given as:

ȳL_d =
L∑

h=1
Ω∗

hȳh (20)

where the calibration weights Ω∗
h are so chosen in order to minimize the Chi-square distance measure

L∑

h=1

(Ω∗
h − Wh)2

WhQh

(21)

subject to the following calibration constraint given as
L∑

h=1
Ω∗

h log x̄h =
L∑

h=1
Wh log x̄∗

h (22)

where Wh = Nh

N
are the known stratum weights. The Lagrange function is given as

L =
L∑

h=1

(Ωh − Wh)2

WhQh

+ 2λ(
L∑

h=1
Ω∗

h log x̄h −
L∑

h=1
Wh log x̄∗

h) (23)

where λ is the Lagrange’s multiplier. In order to find the optimum value of Ω∗
h, we differentiate the

Lagrange function with respect to Ω∗
h and equate it to zero. Thus the calibration weight obtained is given

as
Ω∗

h = Wh + λ(WhQh log x̄h) (24)
Here λ is obtained by substituting the value of Ω∗

h from equation (24) to equation (22), thus this leads
to a calibrated weight as

Ω∗
h = Wh + (WhQh log x̄h)




(
L∑

h=1
Wh(log x̄∗

h − log x̄h)

(
L∑

h=1
WhQh log x̄2

h)


 (25)

Thus, substituting the value of Ω∗
h from equation (25) in equation (20), the proposed calibrated

estimator attained is
ȳL_d =

L∑

h=1
Whȳh +

[
β̂L_d

L∑

h=1
Wh(log x̄∗

h − log x̄h)
]

(26)
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where

β̂L_d =




(
L∑

h=1
WhQh log x̄hȳh)

(
L∑

h=1
WhQh log x̄2

h)


 (27)

For different values of Qh, we can obtain the different forms of the calibration estimators defined in
equations (18) and equation (26).

3 Simulation Study
A simulation study was carried out on a real data and two artificially generated data sets. Following the
principle of Proportional allocation, the random samples are drawn using SRSWOR from each stratum.
A simulated study is done by generating 25,000 samples in R-software.

Real Data
The real data used here is the wheat population for the year 2017 (http://data.icrisat.org/dld/src/crops.html),
which has been divided into three strata of unequal sizes. The X variable is the area of the field (in ha)
and Y variable is the yield (kg per ha). Here, population of size N=109 is divided in h=3 strata where the
stratum sizes are N1=37, N2=26 and N3=46 (such that N1+N2+N3=37+26+46 = 109), respectively.
25,000 samples of sizes n=10, 15, 20, 25 and 30 are generated under stratified sampling. In case of
stratified double sampling, the first phase sample of size m=50 is drawn.

Artificial Data
To assess the performance of the proposed calibrated estimators, a simulation study is carried out by
generating a finite population of size N=4000 for h=3 (strata) where the stratum sizes are N1=1000,
N2=1200 and N3=1800 (such that N1+N2+N3=1000+1200+1800 = 4000), respectively. 25,000
samples of sizes n=100, 200, 300, 400 and 500 are generated under stratified sampling. In case of stratified
double sampling, the first phase sample size m=1000 and second phase sample sizes n=100, 200, 300,
400 and 500 are considered. The values of the auxiliary variable X are generated using Exponential and
Chi-Square distributions with different values of the parameters for each stratum and the variable Y is
generated using the following models:

Exponential Distribution

1st strata: X1 = Exp(1000, 15) and Y1 = 100 + (β1 ∗ X1) + εl where β1 = 1 and εl ∼ N(0, 2)
2nd strata: X2 = Exp(1200, 16) and Y1 = 200 + (β2 ∗ X2) + ε2 where β2 = 2 and ε2 ∼ N(0, 3)
3rd strata: X3 = Exp(1800, 20) and Y1 = 300 + (β3 ∗ X3) + ε3 where β3 = 3 and ε3 ∼ N(0, 4)

Chi-Square Distribution

1st strata: X1 = χ2(1000, 15) and Y1 = 50 + (β1 ∗ X1) + εl where β1 = 0.25 and εl ∼ N(0, 4)

2nd strata: X2 = χ2(1200, 16) and Y1 = 100 + (β2 ∗ X2) + ε2 where β2 = 0.50 and ε2 ∼ N(0, 5)

3rd strata: X3 = χ2(1800, 17) and Y1 = 150 + (β3 ∗ X3) + ε3 where β3 = 0.75 and ε3 ∼ N(0, 6)

The performance of the suggested estimators is measured using percentage absolute relative bias
(%ARB) and percentage relative root mean squared error (%RRMSE) in case of both sampling schemes
which are computed as:
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%ARB(ȳα) = 1
25000

25000∑

i=1

∣∣∣∣∣
(ȳiα − Ȳ )

Ȳ

∣∣∣∣∣× 100; α = tr, sh, s, L, dtr, dsh, ds, dL (28)

%RRMSE(ȳα) =

√√√√ 1
25000

25000∑

i=1

(
(ȳiα − Ȳ )

Ȳ

)2

× 100 ; α = tr, sh, s, L, dtr, dsh, ds, dL (29)

The results attained in case of stratified sampling and stratified double sampling are given in the following
Tables:

Table 1: Percentage Absolute Relative Bias for Real Population under Stratified Sampling
Qh Sample size (n) ARB (ȳtr) ARB (ȳsh) %ARB (ȳs) ARB (ȳL)

Qh = 1 10 0.6236 1.3740 1.2499 1.1641

15 8.6440 0.8157 0.4425 0.5883

20 8.9973 0.4625 0.2051 0.4181

25 9.6235 0.4519 0.1430 0.3491

30 9.3793 0.3391 0.1110 0.2791

Qh = 1
x̄h

10 1.7931 1.6933 1.2887 1.1655

15 9.0027 1.0062 0.4605 0.5849

20 9.4757 0.6071 0.2164 0.4152

25 10.0638 0.5910 0.1488 0.3472

30 9.7563 0.4479 0.1139 0.2776

Qh = 1
log x̄h

10 0.7633 1.4205 1.2604 1.1642

15 8.7424 0.8467 0.4464 0.5877

20 9.1127 0.4860 0.2075 0.4175

25 9.7343 0.4748 0.1441 0.3488

30 9.4698 0.3570 0.1116 0.2788

Table 2: Percentage Relative Root Mean Squared Error for Real Population under Stratified Sampling
Qh Sample size (n) %RRMSE (ȳtr) %RRMSE (ȳsh) %RRMSE (ȳs) % RMSE (ȳL)

Qh = 1 10 173.462 12.622 7.747 5.264

15 70.591 9.607 5.584 3.898

20 53.614 8.09 5.016 3.265

25 54.328 7.075 3.566 2.889

30 45.61 6.283 2.965 2.566
Continued on next page
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Table 2 – continued from previous page
Qh Sample size (n) %RRMSE (ȳtr) %RRMSE (ȳsh) %RRMSE (ȳs) % RMSE (ȳL)

Qh = 1
x̄h

10 215.329 13.634 7.792 5.278

15 77.17 10.156 5.595 3.899

20 59.682 8.517 5.019 3.265

25 57.276 7.442 3.574 2.89

30 53.568 6.589 2.97 2.566

Qh = 1
log x̄h

10 182.882 12.777 7.754 5.266

15 71.694 9.696 5.585 3.898

20 54.559 8.16 5.016 3.265

25 54.796 7.136 3.567 2.889

30 46.479 6.334 2.966 2.566

Table 3: Percentage Absolute Relative Bias for Exponential Population under Stratified Sampling
Qh Sample size (n) %ARB (ȳtr) %ARB (ȳsh) %ARB (ȳs) % ARB (ȳL)

Qh = 1 100 2.9946 1.2831 0.9324 0.3787

200 4.4038 1.2254 0.4781 0.1884

300 3.962 1.3506 0.2973 0.1191

400 4.0945 1.0256 0.2066 0.0831

500 3.6429 0.7785 0.1541 0.0626

Qh = 1
x̄h

100 3.0531 1.2181 0.9541 0.3896

200 4.4437 1.208 0.4845 0.1953

300 3.9976 1.3464 0.301 0.1242

400 4.1103 1.0297 0.2077 0.0866

500 3.6675 0.7833 0.1548 0.0655

Qh = 1
log x̄h

100 2.9722 1.3061 0.931 0.3753

200 4.3891 1.2325 0.4786 0.1864

300 3.9495 1.3528 0.2977 0.1176

400 4.0902 1.0246 0.2074 0.0821

500 3.6365 0.777 0.1548 0.0618
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Table 4: Percentage Relative Root Mean Square Error for Exponential Population under Stratified Sampling
Qh Sample size (n) %RRMSE (ȳtr) %RRMSE (ȳsh) %RRMSE (ȳs) % RRMSE (ȳL)

Qh = 1 100 153.551 42.372 9.289 3.493

200 64.977 36.24 6.485 2.443

300 95.341 17.964 5.165 1.954

400 52.67 14.472 4.424 1.677

500 44.794 11.924 3.871 1.467

Qh = 1
x̄h

100 155.419 42.439 10.071 3.602

200 67.065 36.299 6.981 2.53

300 95.675 18.037 5.55 2.027

400 52.784 14.518 4.751 1.677

500 45.956 11.957 4.154 1.467

Qh = 1
log x̄h

100 152.999 42.355 9.042 3.452

200 64.307 36.222 6.322 2.411

300 95.242 17.941 5.037 1.927

400 52.639 14.457 4.315 1.677

500 44.396 11.915 3.777 1.467

Table 5: Percentage Absolute Relative Bias for Chi-Square Population under Stratified Sampling
Qh Sample size (n) %ARB (ȳtr) %ARB (ȳsh) %ARB (ȳs) % ARB (ȳL)

Qh = 1 100 0.062 0.4329 0.1154 0.0806

200 0.594 0.1832 0.0642 0.0398

300 0.2283 0.2913 0.0454 0.0292

400 0.2053 0.0102 0.0216 0.0163

500 0.0056 0.0545 0.0166 0.0129

Qh = 1
x̄h

100 0.0707 0.4243 0.114 0.0788

200 0.5878 0.1762 0.0632 0.0388

300 0.2353 0.2882 0.0446 0.0284

400 0.2087 0.0121 0.0212 0.0159

500 0.0013 0.0548 0.0162 0.0126

Qh = 1
log x̄h

100 0.0648 0.4299 0.1147 0.0799

200 0.5919 0.1807 0.0637 0.0394

300 0.2309 0.2901 0.0451 0.0289
Continued on next page
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Table 5 – continued from previous page
Qh Sample size (n) %ARB (ȳtr) %ARB (ȳsh) %ARB (ȳs) % ARB (ȳL)

400 0.2065 0.0109 0.0214 0.0161

500 0.0032 0.0547 0.0164 0.0128

Table 6: Percentage Relative Root Mean Square Error for Chi-Square Population under Stratified Sampling
Qh Sample size (n) %RRMSE (ȳtr) %RRMSE (ȳsh) %RRMSE (ȳs) % RRMSE (ȳL)

Qh = 1 100 59.165 38.037 3.253 1.083

200 45.969 44.751 2.302 0.761

300 45.009 21.453 1.839 0.61

400 42.838 18.043 1.568 0.519

500 39.389 14.754 1.38 0.458

Qh = 1
x̄h

100 59.225 38.031 3.212 1.065

200 45.975 44.744 2.271 0.749

300 44.95 21.44 1.813 0.6

400 42.757 18.035 1.546 0.511

500 39.43 14.747 1.36 0.45

Qh = 1
log x̄h

100 59.18 38.035 3.238 1.076

200 45.97 44.748 2.291 0.757

300 44.988 21.448 1.829 0.606

400 42.809 18.04 1.56 0.516

500 39.404 14.751 1.373 0.455

Table 7: Percentage Absolute Relative Bias for Real Population under Stratified Double Sampling
Qh Sample size (m;n) %ARB (ȳdtr) %ARB (ȳdsh) %ARB (ȳds) % ARB (ȳdL)

Qh = 1 50; 10 1.6119 1.3687 1.0952 1.0207

50; 15 6.5088 0.6447 0.3683 0.4581

50; 20 7.232 0.3792 0.1783 0.2953

50; 25 5.9368 0.2757 0.0884 0.2222

50; 30 6.0201 0.2317 0.0882 0.1789

Qh = 1
x̄h

50; 10 3.1666 1.6701 1.1279 1.0206
Continued on next page
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Table 7 – continued from previous page
Qh Sample size (m;n) %ARB (ȳdtr) %ARB (ȳdsh) %ARB (ȳds) % ARB (ȳdL)

50; 15 6.781 0.7997 0.3812 0.4549

50; 20 7.5947 0.4832 0.1857 0.2931

50; 25 6.2457 0.3665 0.094 0.2209

50; 30 6.3262 0.2982 0.0901 0.1778

Qh = 1
log x̄h

50; 10 1.8252 1.4127 1.1041 1.0205

50; 15 6.5759 0.67 0.371 0.4575

50; 20 7.3259 0.3961 0.1799 0.2949

50; 25 6.0144 0.2906 0.0895 0.2219

50; 30 6.0889 0.2426 0.0886 0.1787

Table 8: Percentage Relative Root Mean Square Error for Real Population under Stratified Double Sampling
Qh Sample size (m;n) %RRMSE (ȳdtr) %RRMSE (ȳdsh) %RRMSE (ȳds) % RRMSE (ȳdL)

Qh = 1 50; 10 185.036 12.225 7.681 5.283

50; 15 83.319 8.851 5.173 3.954

50; 20 52.734 7.133 3.942 3.364

50; 25 47.448 5.976 3.36 2.99

50; 30 41.435 5.022 2.836 2.665

Qh = 1
x̄h

50; 10 194.478 13.181 7.723 5.294

50; 15 88.354 9.356 5.18 3.955

50; 20 58.202 7.492 3.944 3.364

50; 25 48.988 6.256 3.361 2.991

50; 30 47.5 5.246 2.838 2.665

Qh = 1
log x̄h

50; 10 185.52 12.371 7.688 5.285

50; 15 84.041 8.932 5.173 3.954

50; 20 53.717 7.192 3.941 3.364

50; 25 47.639 6.022 3.36 2.99

50; 30 42.454 5.06 2.836 2.665
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Table 9: Percentage Absolute Relative Bias for Exponential Population under Stratified Double Sampling
Qh Sample size (m;n) %ARB (ȳdtr) %ARB (ȳdsh) %ARB (ȳds) % ARB (ȳdL)

Qh = 1 1000; 100 3.2578 0.8599 0.8234 0.345

1000; 200 3.5903 0.9484 0.2886 0.1196

1000; 300 3.8258 0.825 0.1759 0.0735

1000; 400 2.7085 0.5316 0.0956 0.0444

1000; 500 1.7879 0.427 0.0794 0.0319

Qh = 1
x̄h

1000; 100 3.3057 0.8082 0.8399 0.3547

1000; 200 3.577 0.9316 0.2879 0.1243

1000; 300 3.8497 0.8244 0.1739 0.0766

1000; 400 2.7306 0.5324 0.0925 0.0462

1000; 500 1.7919 0.4313 0.0782 0.0332

Qh = 1
log x̄h

1000; 100 3.2355 0.8781 0.8236 0.342

1000; 200 3.5941 0.9551 0.2912 0.1183

1000; 300 3.8171 0.8256 0.1779 0.0727

1000; 400 2.7025 0.5316 0.0974 0.0439

1000; 500 1.7883 0.4256 0.0803 0.0316

Table 10: Percentage Relative Root Mean Square Error for Exponential Population under Stratified Double Sampling
Qh Sample size (m;n) %RRMSE (ȳdtr) %RRMSE (ȳdsh) %RRMSE (ȳds) % RRMSE (ȳdL)

Qh = 1 1000; 100 152.986 34.659 8.839 3.337

1000; 200 60.775 24.613 5.898 2.235

1000; 300 53.079 14.609 4.448 1.684

1000; 400 63.375 11.159 3.556 1.349

1000; 500 34.654 9.045 2.926 1.094

Qh = 1
x̄h

1000; 100 153.006 34.755 9.598 3.442

1000; 200 61.867 24.68 6.359 2.315

1000; 300 53.903 14.676 4.779 1.746

1000; 400 64.237 11.201 3.819 1.401

1000; 500 35.014 9.073 3.139 1.152

Qh = 1
log x̄h

1000; 100 153.011 34.633 8.599 3.297

1000; 200 60.418 24.592 5.747 2.205

1000; 300 52.793 14.588 4.338 1.661
Continued on next page

110



Gujarat Journal of Statistics and Data Science Vol. 39, pp. 100–113, 2023

Table 10 – continued from previous page
Qh Sample size (m;n) %RRMSE (ȳdtr) %RRMSE (ȳdsh) %RRMSE (ȳds) % RRMSE (ȳdL)

1000; 400 63.074 11.146 3.468 1.33

1000; 500 34.531 9.037 2.854 1.094

Table 11: Percentage Absolute Relative Bias for Chi-Square Population under Stratified Double Sampling
Qh Sample size (m;n) %ARB (ȳdtr) %ARB (ȳdsh) %ARB (ȳds) % ARB (ȳdL)

Qh = 1 1000; 100 0.669 0.5784 0.1257 0.0826

1000; 200 0.423 0.1409 0.0282 0.0236

1000; 300 0.2107 0.0585 0.0263 0.017

1000; 400 0.0369 0.0557 0.0072 0.0088

1000; 500 0.3538 0.019 0.0093 0.0072

Qh = 1
x̄h

1000; 100 0.6806 0.5687 0.1236 0.0805

1000; 200 0.4179 0.1389 0.0278 0.0229

1000; 300 0.1951 0.0565 0.0257 0.0165

1000; 400 0.0292 0.0542 0.0071 0.0085

1000; 500 0.3558 0.0184 0.0091 0.007

Qh = 1
log x̄h

1000; 100 0.6732 0.575 0.1248 0.0817

1000; 200 0.4212 0.1402 0.028 0.0233

1000; 300 0.2051 0.0577 0.026 0.0168

1000; 400 0.0341 0.0552 0.0071 0.0087

1000; 500 0.3545 0.0187 0.0092 0.0071

Table 12: Percentage Relative Root Mean Square Error for Chi-Square Population under Stratified Double Sampling
Qh Sample size (m;n) %RRMSE (ȳdtr) %RRMSE (ȳdsh) %RRMSE (ȳds) % RRMSE (ȳdL)

Qh = 1 1000; 100 51.981 37.613 3.164 1.063

1000; 200 47.139 24.501 2.088 0.704

1000; 300 67.436 20.02 1.617 0.551

1000; 400 45.65 14.253 1.293 0.45

1000; 500 36.251 10.51 1.058 0.376

Qh = 1
x̄h

1000; 100 52.489 37.606 3.125 1.046
Continued on next page
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Table 12 – continued from previous page
Qh Sample size (m;n) %RRMSE (ȳdtr) %RRMSE (ȳdsh) %RRMSE (ȳds) % RRMSE (ȳdL)

1000; 200 47.131 24.492 2.06 0.694

1000; 300 67.244 20.011 1.594 0.543

1000; 400 45.595 14.247 1.275 0.45

1000; 500 36.152 10.505 1.044 0.376

Qh = 1
log x̄h

1000; 100 52.139 37.61 3.15 1.057

1000; 200 47.135 24.498 2.078 0.7

1000; 300 67.367 20.017 1.609 0.548

1000; 400 45.629 14.25 1.287 0.45

1000; 500 36.216 10.508 1.053 0.376

4 Conclusion
It is clear from Tables 1 to 12 that the values of Percentage absolute relative bias % ARB and Percentage
Relative Root Mean Squared Error % RRMSE of the suggested estimators are less the the estimators
given by [9], [10] and [12] for both stratified and stratified double sampling schemes. The values of the %
RRMSE also decrease as the values of sample size increase for a real as well as both artificial datasets.
The result of the simulation study indicates that the proposed estimators of the population mean in case of
stratified random sampling and stratified double sampling using logarithmic mean of the auxiliary variable
in calibration constraint are found to be more efficient as compared to the estimators of [9], [10] and [12]
based on the considered datasets.
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Abstract. Air is the most essential element for existence of life. With urbanization and

industrialization air pollution had increased and had become a major global issue for 

development and growth. It is impacting the health of humans, flora, and fauna of our 

Biodiversity. In many studies, it is discussed that air pollution hurts the lants and ecosystem. 

An approach is made to analyze the impact, compare, and model greenness using a geospatial 

data considering two sites namely Ahmedabad city and Nal-Sarovar of Gujarat state. We 

observe that the average NDVI of both the sites was not the same. Based on the statistical 

spatial analysis further models for each location were built to predict NDVI using PM10, CO, 

LST, SMI, and NDVI. Also, for Ahmedabad city out of 17 places 7 had reliability more than 

0.50 while that of Nal-Sarovar out of 13 places 7 models had reliability greater than 0.50. This 

study also raises the concern that NDVI had a positive relationship with all variables under 

study except NDMI. This gives us a new dimension to investigate the impact of AQI on 

vegetation on the selected area more preciously and concisely. 

Keywords: Spatial data, NDVI, PM10, CO, LST, SMI, NDMI 

1. Introduction

Air is the mixture of several gases like N2, O2, O3, CO2, CH4, SO2, N2O, etc., with development 

in urbanization and industrialization these gases have also increased and have crossed the limits 

and are now present with a high concentration in the atmosphere which leads to air pollution. 

Major sources of air pollution in the cities around the globe is emission from vehicles, thermal 

power plants, industrial units, and domestic (Salah and Ghada, 2014; Salah, 2011). In recent 

years these unplanned and uncontrolled development has led to ecological imbalance, and 

ultimately, ecological collapse of all the hazards that our ecology is prone to in today’s 

environmental scenario, air pollution has become a major concern around the globe (Gheorghe 
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and Ion, 2011). It causes several health problems, and it has been linked with illnesses and 

deaths from heart or lung diseases, also has affected the climatic cycle of the environment and 

has resulted in an increase in temperature every year (Lim et al., 2010).  

Many studies across the earth are conducted where it has been shown how air pollution 

is impacting vegetation in the surroundings. Pollutants present in the air hurt plants either 

directly (toxicity) or indirectly (changing soil pH) (Alseroury,2017). The particulate matters 

have a negative mechanical effect. They cover the leaf blade reducing light penetration and 

blocking the opening of stomata. These impediments strongly influence the process of 

photosynthesis and has resulted in a sharp decline in it (Emberson et al., 2001). These results 

in the deterioration of the health and the greenness of the plants, thus necessitating the 

monitoring and intervention air pollution. Air Quality Index (AQI) is one such measure that 

helps us to signify the severity of air for all biotics on planet earth. The AQI is a way of showing 

changes in the amount of pollution in the air (Lim et al., 2009). With the increase in 

transportation and industrialization, air pollution has also increased and has shown its adverse 

effect on biotic and non-biotic objects all around the globe. To look around a large area for a 

discrete time point over a larger area earlier was difficult, but now with the evolution of modern 

technology many alternative approaches are possible for modelling and decision making, 

which has made certain tasks smooth in estimating the AQI. The use of modern technology 

such as remote sensing and GIS can provide geospatial distribution of pollutants over time and 

location, and digital records and maps are acquired as output for the same (Agrawal et al., 

2003; Hurlock and Stutz, 2004). With the innovation of these technologies, it has become 

possible and easy to monitor and detect changes on land and water (Sohrabiniaa and 

Khorshiddoust, 2007). Many qualitative types of research are conducted in which the impact 

of air pollution is measured while some studies have used spatial approach to estimate the AQI. 

However, the object of this study is to estimate the AQI and NDVI using spatial data 

quantitatively. 

 The article is organized in the following way: Section 2 offers the materials and 

methods needed for the study. The methodology and study area are briefly mentioned in this 

section. The details about the presentation of data are shown in Section 3. The statistical 

analysis and findings are presented in Sections 4 and Section 5 respectively. The last section 

offers some conclusions.  
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2. Materials and Methods 

 

2.1. Methodology

Two different sources of data are taken into the consideration to conduct this study i.e spatial 

and non-spatial data. Multispectral Landsat-8 Optical Land Imager (OLI) spatial data with a 

resolution of 30m was acquired from the USGS website. This was used for generating various 

indices like vegetation index, moisture index, and Soil index, while non-spatial data of 

pollutants and AQI is acquired from the websites for stations defined with the boundaries of 

the study area. With the help of different sources of collected data an approach is made to 

understand the relationship between air pollutants and spatial indices generated from spatial 

data and established a model which can help in predicting NDVI.  To achieve this, our objective 

methodology given in figure 1 was strictly followed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Methodology of the study 
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2.2 Study Area 

Since the study focusses on the vegetation status of two different locations in Gujarat, we used 

the point of reference as same for both the location. Ahmedabad is one of Gujrat’s largest and 

fastest-growing cities with a population of over 7.5 million, located on the banks of the 

Sabarmati River. It is located at 23.03°N 72.58°E spanning an area of 205 km². According to 

the WHO urban air quality database and several international and Indian studies, Ahmadabad 

is identified as one of the Air polluted cities in Gujarat. The second site is situated in the west 

of Ahmedabad near Sanand village is Nal-Sarovar which is about 64 km away from 

Ahmedabad city. It is one of the largest wetland and bird sanctuaries in Gujarat, also 

surrounded by vegetation diversity as well. Overall, 30 locations were selected of which 17 

were from different areas of the city and 13 were from the nearby areas of wetland as shown 

in Figure 2. The names of this selected location are given in table 1. Locations with names are 

presented in figure 2 of the study area map and A and B represent the sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 2: Study area map 

 

A 

B 
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Table 1: locations name concerning site 

 

Site Location’s name 

Ahmedabad City (A) Kankaria Lake, Law Garden, Maninagar, Vatva, Pirana, Sabarmati River 

Front, Parimal Garden, Navrangpura, Gujarat University, Nikol, Vasna, 

Riverfront Garden, Ambavadi, Narol-Gam, Sundarvan, Bavla, Sanand 

Nal-Sarovar (B) Nal-Sarovar, Ranagadh, Kayla, Devadthal, Durgi, Devdholera, Nanodara, 

Meni, Asalgam, Sankod, Vekeriya, Metal, Rupavati 

 

3. Data presentation 

3.1 Remote sensing data acquisition 

Remote sensing data used for this study is the Landsat 8 Optical Land Imager (OLI) level-1 

imaginary, acquired for free through the United States Geological Survey (USGS) of Earth 

Resources Observation and Science Center (EROS) from January 2017 to March 2021. For 

this study bi-monthly data was considered with no or less cloud coverage for which cloud 

coverage was kept as 10%.  Overall, we had 30 spatiotemporal data scenes. The acquired data 

of the study area was already geometrically corrected and further, radiometric correction of 

multi spectral imagery was done of acquired data by converting digital numbers (DNs) to the 

spectral radiance by the proposed method by Landsat 8 OLI level-1 guideline pdf. Processed 

data consists of 11 bands ranging from 0.433 µm-12.51 µm, which comprises visible bands, 

NIR, SWIR, and TRIS bands. All 13 bands comprise different resolutions, the visible band has 

a resolution of 30 meters while NIR, SWIR, and TRIS have a resolution of 100 meters and the 

panchromatic band has a resolution of 15 meters. Data for the same can be acquired after every 

15 days. Table 1 presents the specifications of these bands.  

 

Table 2: L-8 OLI level-1 band description 

 

Band Number Band Description Wavelength (µm) 

1 Costal Aerosol 0.43 – 0.453 

2 Blue 0.450 – 0.515 

3 Green 0.525 – 0.600 

4 Red 0.630 – 0.680 

5 Near-Infrared (NIR) 0.845 – 0.885 

6 Short Wave Infrared (SWIR-1) 1.560 – 1.660 

7 SWIR-2 2.100 – 2.300 
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8 Panchromatic 0.500 – 0.680 

9 Cirrus 1.36-1.38 

10 Thermal Infrared (TIRS) 1 10.30 – 11.30 

11 Thermal Infrared (TIRS) 1 11.50 – 12.51 

 

3.2 Spectral indices  

All materials are prone to some electromagnetic spectrum, which is reflected and the rest is 

absorbed by the material. Considering the same mechanism and based on the understanding of 

reflecting and absorption these spectral indices are calculated. Some of the spectral indices 

used in our study are Normalized Difference Vegetation Index (NDVI), Soil Moisture Index 

(SMI), and Normalized Difference Moisture Index (NDMI). Their analytical significance is 

described below.  

 

3.2.1 Normalized Difference Vegetation Index (NDVI)  

Vegetation absorbs green light while reflecting red light more and near-infrared (NIR) less. 

Due to this reason red and NIR are used to calculate NDVI (J. E. George et al., 2017; Yuan et 

al., 2007). Formula to get NDVI is given as follows: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                               (1) 

 

To make values easily interpretable normalization and standardization is done by taking the 

difference between both the bands in the numerator and summing them up in the denominator, 

and hence, the values will range between -1 and +1. The negative values indicate the presence 

of non-vegetative areas like water bodies, urban areas, Baran land, snow, and cloud while the 

positive values indicate vegetations and that could be anything like dense forests, sparse 

vegetation, auricular land, etc. 

 

3.2.2 Land Surface Temperature (LST)  

This index indicates the temperature of the ground surface. Thermal bands numbers 10 and 11 

of Landsat image are used to get LST. The pixels of images consist of Digital Numbers (DN) 

which can’t give information about the temperature. Since reflection of electromagnetic waves 

differs for each material as a result of rising temperature, the DN value is converted to radiance. 

Radiance is the measure of how much light the sensor can see the object, which is reflected 
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from the object under consideration (Stathopoulou et al.,2007). The equation of atmosphere 

radiance is given as follows:  

 

                𝐿𝜆 = 𝑀𝐿 + 𝑄𝐶𝐴𝐿 ∗ 𝐴𝐿          (2) 

 

where 𝐿𝜆: Top of atmosphere radiance (watts/ (m2 ∗ srad ∗µ), 𝑀𝐿: Band multiplicative rescaling 

factor from metadata, 𝐴𝐿: Band additive rescaling factor from metadata, and 𝑄𝐶𝐴𝐿: Quantized 

and calibrated standard product values (DN). Now we have the radiance values of the Thermal 

Infrared bands of the data which should be converted to satellite temperature. It is the measure 

of radiation traveling from the top of the atmosphere to satellite. The satellite brightness 

temperature [5] is calculated by,  

𝑇 =  
𝐾1

ln(
𝐾2
𝐿𝜆

)+1
                          (3) 

where 𝐾1and 𝐾2 are the coefficients calculated by the effective wavelength of the satellite 

sensor which is given in the metadata file and 𝐿𝜆 is the radiance value. To get LST some other 

parameters like NDVI, Proportion of vegetation, and land surface emissivity should be used 

and can be found in George et al. (2017). 

 

3.2.3 Normalized Difference Moisture Index (NDMI) 

Normalized difference moisture index indicates the presence of moisture content in vegetation 

(Josef et al. ,2020; Rahman and Victor,2019). This can be obtained using the NIR and SWNIR 

bands and its formula is given by   

 

𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝑁𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝑁𝐼𝑅
                (4) 

 

3.3 Ground Data 

Data of various pollutants and AQI (Air Quality Index) was collected for January 2019 to April 

2021 from predefined stations. Parameters like PM10, PM2.5, O3, NO2, CO, SO2 were taken 

on ground stations. These parameters were then considered for calculating the AQI (Air Quality 

Index) and were consider to further to understand the relationship with vegetation index and 

build a model. 
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4. Statistical Analysis 

Data analysis using statistical principles and methods form the basis of any measurement-based 

decision-making in any branch of science and management. Below we use various statistical 

tools to estimate and model the NDVI and AQI. We also propose various suggestions and 

recommendations for policy makers working in environmental science and climate 

management issues.   

 

4.1 Two-sample t-test 

Two sample t-test is a statistical test that is used for the comparison of the mean of the two 

samples when the standard deviation is not known and assume it to be equal. In this case, the 

formula for a two-sample t-test is given as  

 

             𝑡 =  
(𝑥̅1−𝑥̅2)

√𝑆2(
1

𝑛1
−

1

𝑛2
)
                        (5) 

 

Accordingly, our proposed tests of hypothesis will be to test 𝐻0: 𝜇0 =  𝜇1 versus 𝐻1: 𝜇0 >  𝜇1, 

where 𝜇0 is the mean NDVI of Nal-Sarovar and 𝜇1 is the mean NDVI of Ahmedabad city. The 

specificity of the alternative hypothesis is due to the fact that the NDVI of Nal-Sarovar is 

expected to be larger than the other city area as discussed previously.  

 

 

4.2 Multiple Linear Regression 

 

Multiple linear regression is the extended version of simple linear regression. In this, at a time 

more than one exploratory variable is considered and the statistical model that is constructed 

is shown in the following way:  

  

𝑌 =  β0 +  β1x1 + β2x2 + β3x3 +  β4x4 +  β5x5 +  𝜀            (6)

 

where, Y = NDVI, β0 = Intercept of the model, β𝑖′𝑠 = slops; i= 1,2,3,4,5, x1 = PM10, x2 = CO, 

x3 =LST, x4 = SMI,  x5 = NDMI, and 𝜀 = error term. 

In this study, we have tried to build-up a multiple liner model that tries to quantify the relation 

between image extracted vegetation parameter with that of air pollutants continuously 

measured at ground stations (Mozumder et al.,2012).  

 

 

 

 

 

121



5. Result and findings 

 
At the initial stage visualization of ground data was done to understand the trend of AQI 

considering the lower and upper limit specified by the Central pollution control board (CPCB) 

(lower limit = 60 and upper limit = 100) for AQI as shown in figure 3. 

 

Figure 3: AQI line chart from January 2019 to April 2021 

 

The variation with an upward trend is observed in values of AQI for the year 2019 till October 

after which a sharp fall is observed and has gone below 100. During the year 2020, it remained 

below 100 and again as at the end of the year it started to rise. One of the possible reasons 

could be the relaxation in the lockdown due to COVID19 given by the government. In the year 

2021 more variation with an upwards trend is observed during the initial days and started 

dipping thereafter possibly due to the second wave OVID19. One of the reasons for this is 

because the pattern of cases strictly followed an exponential distribution. 

Further to test if there is a significant difference in the air quality in the two sites 

discussed, a two-sample t-test was applied on the NDVI average measure. We found that the 

hypothesis is rejected 5% level of significance (p-value is 6.6178E-6) and conclude that the 

average NDVI of Nal-Sarovar is more than that of Ahmedabad city. In many types of research, 
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approaches are made to predict the parameters using information extracted from the spatial 

data. In our study before building a model to predict the NDVI from the spatial data, it is 

essential to observe the relationship exists between the sources of data (spatial and non-spatial 

source of data) in terms of its variables, we obtain, the correlation matrix as shown in figure 4. 

It is observed that the variables NDVI, PM10, CO, LST had shown a moderate positive 

correlation.

 

 

Figure 4: Heat map with correlation values between the variables

 

We observed that response variable NDVI had a moderate correlation with LST, PM10 and 

CO.  However, the variable NDMI had a low or high negative correlation with all other 

variables. Based on the correlation matrix, a multiple linear regression models for NDVI for 

each location were built. The model reliability is measured using the coefficient of 

determination R2. Models concerning two sites with respect to reliability are shown in table 3 

and table 4 respectively for Ahmedabad city and Nal-Sarovar sites. 

 

Table 3: Models of 17 locations of Ahmedabad city 

Sr. No Location Equation 
R-

Square 

1 Ambavadi 
NDVI =0.1309 +0.000253*PM10 + 0.000137*CO + 

0.000324*LST+0.00544*SMI + 0.4739*NDMI 
0.92 

2 Pirana  
0.5452 - 0.000024*PM10 - 0.00117*CO + 

0.0000183*LST + 0.046*SMI - 0.9340*NDMI 
0.64 

3 Maninagar 
0.2141 - 0.0001008*PM10 + 0.0004196*CO + 

0.0009842*LST + 0.071*SMI - 0.4272*NDMI 
0.61 
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4 Navrangpura 
0.3967 - 0.00052*PM10 + 0.000271*CO + 

0.0000158*LST + 0.1076*SMI -0.6771*NDMI 
0.54 

5 Bavla 
0.3646 +0.00054*PM10 -0.0004*CO -0.0003*LST + 

0.0774*SMI -0.6952*NDMI 
0.53 

6 Sundarvan 
0.1743 + 0.0000794*PM10 + 0.000614*CO 

+0.000199*LST +0.0583*SMI-0.2268*NDMI 
0.51 

7 Vasna 
-0.01421 +0.000334*PM10 -0.00016*CO + 

0.000262*LST+0.13174*SMI + 0.13018*NDMI 
0.50 

8 Parimal Garden 
0.2798 - 0.00029*PM10 - 0.0006*CO + 

0.000398*LST + 0.1915*SMI -1.14*NDMI 
0.45 

9 Sanand 
0.1391+0.000228*PM10 + 0.000285*CO -

0.00004*LST +0.04381*SMI +0.4351*NDMI 
0.40 

10 Gujarat University 
0.2109 - 0.0000091*PM10 + 0.000487*CO + 

0.0000605*LST-0.01144*SMI -0.2438*NDMI 
0.37 

11 Nikol 
0.08925 +0.00045*PM10 - 0.0002*CO + 

0.00027*LST+0.05786*SMI + 0.3024*NDMI 
0.36 

12 Vatva 
0.1180 + 0.000209*PM10 + 0.000227*CO + 

0.000197*LST + 0.028*SMI + 0.3497*NDMI 
0.33 

13 
Sabarmati River 

Front 

0.184+ 0.0002534*PM10 - 0.000106*CO + 

0.0000964*LST + 0.046*SMI + 0.01686*NDMI 
0.33 

14 Law Garden 
0.3964 - 0.0004269*PM10 + 0.0000693*CO + 

0.000837*LST + 0.1496*SMI - 0.32005*NDMI 
0.28 

15 Kankaria Lake 
0.126833 + 0.000044*PM10 + 0.000228*CO – 

0.0000140*LST + 0.0328*SMI + 0.1642*NDMI 
0.25 

16 Riverfront Garden 
0.2022 +0.0000715*PM10 +0.0000382*CO + 

0.000494*LST+0.0391*SMI +0.478*NDMI 
0.20 

17 Narol-Gam 
0.2589 +0.00055*PM10 - 0.00014*CO + 

0.0000057*LST-0.0155*SMI + 0.1459*NDMI 
0.18 

 

Table 4: Models of 13 locations of Nal-Sarovar 

Sr. 

No 
Location Equation 

R-

Square 

1 Sankod 
0.4272 + 0.000225*PM10 -0.0000217*CO -0.000246*LST + 

0.0659 *SMI -0.8769*NDMI 
0.82 

2 Devdholera 
0.4396 + 0.00007*PM10 – 0.0006*CO + 0.000374*LST + 

0.0948*SMI -0.8327*NDMI 
0.80 

3 Metal 
0.4140 + 0.000296*PM10 -0.000129*CO +0.000145*LST 

+0.04218*SMI – 0.9293*NDMI 
0.78 

4 Meni 
0.4119 -0.0000905*PM10 -0.000164*CO + 0.000173*LST 

+0.0675*SMI -0.8984*NDMI  
0.74 

5 Kayla 
0.1226 -0.0006356*PM10 +0.0024*CO + 0.0004603*LST 

+0.01898*SMI + 0.7958*NDMI 
0.53 

6 Nal-Sarovar 
0.1609 +0.0000853*PM10 +0.00065*CO + 

0.00031*LST+0.065*SMI – 0.0778*NDMI 
0.51 

7 Nanodara 
0.2935 -0.000106*PM10 -0.000027*CO + 0.001257*LST 

+0.06732*SMI -0.77359*NDMI 
0.50 

8 Vekeriya 
0.3152 -0.00077*PM10 +0.00208*CO -

0.00136*LST+0.2417*SMI +0.5183*NDMI 
0.44 

9 Ranagadh 
0.2031 +0.000262*PM10 +0.0003467*CO + 0.0000794*LST 

+0.0599*SMI + 0.05294*NDMI 
0.42 

10 Asalgam 
-0.01539 +0.001504*PM10 -0.00155*CO +0.000408*LST 

+0.08975*SMI -0.2409*NDMI 
0.34 

11 Durgi 
0.2518 + 0.0000648*PM10 + 0.0000754*CO +0.000708*LST 

+0.0718*SMI – 0.46412*NDMI 
0.30 

12 Devadthal 
0.1776 + 0.0000509*PM10 + 0.00112*CO + 0.000275*LST + 

0.1446*SMI + 0.3495*NDMI 
0.20 
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13 Rupavati 
0.2651 +0.000428*PM10 +0.000186*CO -0.00012*LST 

+0.03396*SMI +0.1469*NDMI 
0.16 
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Figure 5: Actual vs predicted NDVI for top 4 locations for both sites 

 

The graphical plot of Actual vs predicted NDVI for the top 4 locations for both sites are 

presented in Figures 5 A-D. In the above figure A1, B1, C1, and D1 represent the chart of the 

top four locations whose reliability is 0.92, 0.64, 0.61, and 0.54 at Ahmedabad city site 

respectively, while A2, B2, C2, and D2 represent the charts of top four locations whose 

reliability is 0.82, 0.8, 0.74, and 0.72 at the Nal-Sarovar site respectively. In most of the cases, 

the predicted values are closed to the actual values. 

  

6. Conclusion 

The relationship among the NDVI and other parameters was a point of concern and have shown 

a new dimension to carry out the study deeper into understand the change and the relation 

between vegetation and air pollution component over some time.  Also, it is observed that at 

identical point in time, the mean NDVI is not the same for both the sites. Results obtained were 

based on shorter time frame. Further on extending study it may give encouraging results with 

remarkable predictability preciseness. The reliability of model is less as single factor is taken 

under the consideration apart from the air pollutants other factors alike soil fertility, water 

level,flow of wind, altitude etc can be considered for improving the defined model. Apart from 

linear model other models such as non-linear models, Gaussian dispersion models, model based 

on feature extraction techniques while constructing any deep machine learning models can be 

tried and tested for different conditions and locations.  We believe that Geospatial data has 

more potential to answer some of the current ongoing discussions and questions at the global 

level for climate change, ecology cycle, and conservation issues.  

 

0
0.2
0.4
0.6
0.8

 J
an

-…

F
eb

-2
0
1

7

A
p

r-
2
0

1
7

M
ay

-…

O
ct

-2
0
1

7

N
o

v
-…

Ja
n

-2
0

1
8

F
eb

-2
0
1

8

A
p

r-
2
0

1
8

M
ay

-…

S
ep

-2
0
1

8

O
ct

-2
0
1

8

N
o

v
-…

Ja
n

-2
0

1
9

F
eb

-2
0
1

9

A
p

r-
2
0

1
9

M
ay

-…

S
ep

-2
0
1

9

O
ct

-2
0
1

9

N
o

v
-…

Ja
n

-2
0

2
0

F
eb

-2
0
2

0

A
p

r-
2
0

2
0

M
ay

-…

S
ep

-2
0
2

0

O
ct

-2
0
2

0

N
o

v
-…

Ja
n

-2
0

2
1

F
eb

-2
0
2

1

A
p

r-
2
0

2
1

N
D

V
I

Months

NDVI for Meni

NDVI Predicted NDVI

D2 

127



References 

Agrawal I. C., Gupta R. D., Gupta V. (2003). “GIS as modelling and decision support tool for 

air quality management: a conceptual framework”, 6th International Conference on 

GIS/GPS/RS: MapIndia, India. 

Alseroury F. (2017). “Use of GIS to study the effect of air pollutants on the vegetation cover”, 

International Journal of Biosciences, Vol 11, No. 6, pp 1-8. 

Emberson L., Ashmore M., Murray F., Kuylenstierna J.C.I. (2001). “Impacts of Air Pollutants 

on Vegetation in Developing Countries”, Water Air and Soil Pollution, Vol. 130, No. 1, pp. 

107-118. 

Famoso F., Wilson J., Monforte P., Brusca S., and Lulla V. (2017). “Measurement and 

modeling of ground-level ozone concentration in Catania, Italy using biophysical remote 

sensing and GIS”, International Journal of Applied Engineering Research, Vol. 12, No. 21, 

pp. 10551-10562. 

George J. E., Aravinth J., and Veni S. (2017). “Detection of Pollution Content in an Urban area 

using Landsat 8 Data”, IEEE  

Gheorghe I. F. and Ion B. (2011). “The Effects of Air Pollutants on Vegetation and the Role of 

Vegetation in Reducing Atmospheric Pollution”, The Impact of Air Pollution on Health, 

Economy, Environment and Agricultural Sources,  

Hurlock S. C., Stutz J. (2004). “GIS in air pollution research, the role of building surfaces”, 

ESRI International user conference, San Diego, California, p 20-44. 

Josef L., Pavel S., Daniel P., Natalia K., Jan S., Radovan H. and Premysl S., 2020, “Sentinel-2 

Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation”, Remote 

Sensing, Vol. 12, No. 12, pp.19-14. 

Lim H. S., Jafri M. Z. M., Abdullah K. (2010). “Algorithm for Air Quality Mapping Using 

Satellite Images”, Air Quality 

Lim H. S., MatJafri M. Z., Abdullah K. and Wong C. J. (2009). “Air Pollution Determination 

Using Remote Sensing Technique”, Advance in Geoscience and Remote Sensing 

Lorenz M., Clarke N., Paoletti E., Bytnerowicz A., Grulke N., Lukina N., Sase H. and Staelens 

J. (2010). “Air Pollution Impacts on Forests in a Changing Climate”, Forest and Society – 

Responding to Global Drivers of Change, International Union of Forest Research 

Organizations, Vol.25, pp.55-74. 

Manisalidis I.,  Stavropoulou E., Stavropoulos A. and Bezirtzoglou E. (2020). Environmental 

and Health Impacts of Air Pollution: A Review, Front. Public Health, Vol.8, No. 14.  

Mendoza C.I.A., Teodora A.C., Torres N., Vevanco V. (2019). “Assessment of Remote 

Sensing Data to Model PM10 Estimation in Cities with a Low Number of Air Quality Stations: 

A Case of Study in Quito”, Environments, Vol. 6, No. 7, pp 85. 

Mishra M. (2019).  “Poison in the air: Declining air quality in India”, lungindia, Vol. 36, No.2, 

pp. 160–161.  

128



Mozumder C., Reddy K. V., Pratap D. (2012). “Air Pollution Modeling from Remotely Sensed 

Data Using Regression Techniques”, Indian Society of Remote Sensing,Vol. 41, pp. 269-277 

Rahman S. and Victor M. (2019). “Change Vector Analysis, Tasseled Cap, and NDVI-NDMI 

for Measuring Land Use/Cover Changes Caused by a Sudden Short-Term Severe Drought: 

2011 Texas Event”, MDPI, Vol. 11, No. 19, pp. 22-17. 

Salah A.H. (2011). “Air Quality Over Baghdad City Using Earth Observation and Landsat 

Thermal Data”, Journal of Asian Scientific Research, Vol. 1, No. 6, pp. 291-298. 

Salah A.H.S. and Ghada H. (2014). “Estimation of PM10 Concentration using Ground 

Measurements and Landsat 8 OLI Satellite Image”, Journal of Remote Sensing & GIS, Vol. 3, 

No. 2. 

Sohrabinia M., Khorshiddoust A.M. (2007). “Application of satellite data and GIS in studying 

air pollutants in Tehran”, Habitat International, Vol. 31, pp. 268-275. 

Somvanshi S. S., Vashisht A., Chandra U. and Kaushik G. (2019). “Delhi Air Pollution 

Modelling Using Remote Sensing Technique”, Handbook of Environmental Materials 

Management, Springer, pp 1-27. 

Stathopoulou, Marina, and Cartalis C., 2007, “Daytime urban heat islands from Landsat ETM+ 

and Corine land cover data: An application to major cities in Greece.” Solar Energy, Vol. 81, 

No. 3, pp. 358-368 

Stevens C. J., Bell J. N. B., Brimblecombe P., Clark C. M., Dise N. B., Fowler D., Lovett G. 

M. and Wolseley P. A., 2020, “The impact of air pollution on terrestrial managed and natural 

vegetation”, Philos Trans A Math Phys Eng Sci, Vol. 378, No. 2183 

Vashisht A. and Somvanshi S., 2018, “Use of remote sensing technique in Air Quality 

Modelling of Delhi Region”, 19th Esri India User Conference, Gurugram, NCR 

Yuan, Fei, and Bauer M. E., 2007, “Comparison of impervious surface area and normalized 

difference vegetation index as indicators of surface urban heat island effects in Landsat 

imagery”, Remote Sensing of environment, Vol. 106, No. 3, pp. 375-386 

https://greentumble.com/effect-of-pollution-on-plants/ 

 

 

 

129



Estimating the Finite Population Mean With Known Coefficient of 

Variation of Study Variable and Using Information on Auxiliary 

Variable under Scrambled Response Model in Presence of Non-

Response  

Housila P. Singh and Preeti Patidar 

School of Studies in Statistics  

Vikram University, Ujjain - 456010, M.P., India. 

ABSTRACT 

       Taking motivation from Searls (1964), Hansen and Hurwitz (1946), Khare and 

Kumar (2011), Diana and Perri (2011), Diana et al (2014), Ahmed et al (2017) proposed 

an estimator for population mean of a sensitive quantitative variable with known 

coefficient of variation of the study variable using auxiliary information in two phase 

sampling scheme considering a randomization mechanism on the second call that 

provides privacy protection to the respondents to obtain truthful information. Ahmed et al 

(2017) have further suggested generalized ratio and regression- type estimators under two 

phase sampling scheme. In this paper we have suggested a model which is more general 

and more efficient than Ahmed et al (2017) model under realistic condition. We have 

suggested three classes of estimators under two phase sampling scheme for finite 

population mean exploiting the same amount of information considering a randomization 

mechanism on the second call. The properties of the suggested classes of estimators are 

studied under large sample approximation. It is observed that the mean squared errors 

obtained by Ahmed et al (2017) of their estimators are incorrect. So we have also 

obtained the correct expressions of the mean squared errors of Ahmed et al (2017) 

estimators. Some more efficient estimators are investigated. An empirical study is carried 

out to judge the performances of the suggested classes of estimators.  
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1. INTRODUCTION

In human sample surveys, issues with non-response arise when people are 

approached via telephone, mail or direct interviews. There are many aspects in which 

problems with non-response arise. It depends on the essence of the information needed, 

whether the survey concerns general or sensitive issues of society. Typically, when 

surveys are performed to gather general information about people such as age, schooling, 

income, household size, etc., the prevalence of the non-response may be in the form of 

people's unavailability, not at home, unable to understand the questionnaire, etc. On the 

other hand, if the information needed concerns sensitive issues such as betting, money 

laundering, drug dependency, number of abortions, then people usually hesitate to offer 

true answers and ultimately fail to reply or deliver an evasive response. In such situations, 

to reduce the non-response bias and to estimate the population parameters, Hansen and 

Hurwitz (1946) introduced a procedure for sub-sampling the non-respondents, in which it 

is supposed that all person give full response on second call. 

In the case of surveys relevant to the sensitive characteristics of the population, 

reducing the bias of non-response and obtaining accurate information from respondents 

rely on the security of their confidentiality and privacy there are some statistical 

procedures for the interviewee to collect true data in order to preserve privacy. These 

procedures are known as Randomized Response techniques (RRTs). Warner (1965) first 

used the RRT to estimate the proportion of population possessing a sensitive feature that 

requires a 'yes' or 'no' response, or to pick a response from a range of nominal categories. 

Later on, several authors have given contribution for improving efficiency of this 

procedure, among others Fox and Tracy (1986), Mangat and Singh (1990), Shabbir and 

Gupta (2005), Diana and Perri (2009), Singh and Gorey (2016), Singh and Tarray (2014). 

RRT provides quantitative response that depends on a random number from a known 

distribution. Using the idea of quantitative sensitive response, some authors proposed the 

Scrambled RRTs, for instance, see Pollock and Bek (1976), Eichorn and Hayre (1983), 

Diana and Perri (2010, 2011), Tarray and Singh (2016), Bar-Lev et al (2004), Saha 

(2007). Diana et al (2014) developed a modified version of the Hansen and Hurwitz 

(1946) estimator for quantitative study variable and considered a second call 

randomization mechanism that would provide privacy protection for respondents in order 

to obtain truthful information. This estimator decreases non response bias but increases 

variance owing to the use of Scrambled RRT in the non-response class. 

It is well founded that the use of auxiliary information provides efficient 

estimators at the stage of estimation, for instance see, Singh H.P. (1986) and Singh S. 

(2003).  Searls (1964) was first who suggests an estimator for population mean using the 

known coefficient of variation of the study variable y. After that, some authors including 
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Searls (1967), Sen (1978, 1979), Upadhaya and Singh (1984) and Singh and Katyar 

(1988) have used the coefficient of variation for estimating the population mean. Khare 

and Kumar (2009) proposed ratio, product and regression type estimators of population 

mean  in the presence of non-response using coefficient of variation  of the study 

character y. This study has been further extended by Khare and Kumar (2011) for 

estimating the population mean using known coefficient of variation of the study 

character in two phase sampling in presence of non-response. Rajyaguru and Gupta 

(1995, 2004, 2006) have also discussed the problem of estimation of coefficient of 

variation. Ahmed et al (2017) suggested an estimator for population mean of a 

quantitative study variable utilizing known coefficient of variation of the study variable 

under two-phase sampling scheme using the scrambled response to non-respondents on 

the second call.  

In this paper we propose three classes of estimators under scrambled response 

model using auxiliary information under two-phase sampling scheme for population 

mean with known coefficient of variation of the study character in presence of  non - 

response. The bias and mean square errors (MSEs) of the suggested classes of estimators 

under large sample approximation have been obtained. We have also given the correct 

MSE expressions of the estimators envisaged by Ahmed et al (2017). Merits of the 

proposed classes of estimators are evaluated through an empirical study.  

1.1 BACKGROUND AND HANSEN AND HURWITZ (1946) ESTIMATOR 

Consider a finite population  N ,...,, 21  of size N (units). Let  ii xy , be 

the values on i
th 

unit for study character y and auxiliary character x of the population .

Here y denotes quantitative study variable of interest with unknown population mean  Y

and unknown population variance 
2

yS  supposing that non-response occurs in y . When the 

population mean  X  of the insensitive auxiliary variable x is not known then we use the 

two-phase (or double)-sampling scheme. In the first-phase, select a larger sample 'n
s of 

size  Nnn ''
 by simple random sampling without replacement (SRSWOR) to estimate 

population mean  X   and then in the second phase take a smaller sub- sample ns of size n 

from  '' nnn   by SRSWOR to estimate  XY , . Hansen and Hurwitz (1946) proposed

the following sub-sampling scheme. Suppose that from n sample units, a subset 1s of 

size 1n  supplies information on the y and, the remaining 12 nnn   units are non-

respondents. Then a sub sample rs2 of size 1,2  kknr , is selected from 2n  non-

response units, where r would be an integer otherwise it must be rounded. Assume that 

all r selected units show full response on second call. Consequently, the entire population 

  is divided into two groups 1P  and 2P , where 1P  is the group of the respondents of size 
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1N  that would give  response on first call at the second phase, whereas 2P  is non-

respondents group of size 2N  which would not respond on first call at the second phase 

but will cooperate on the second call. Obviously, 1N  and 2N  are unknown. 

We denote  xy ,  the sample means of  xy ,  respectively based on a sample of

size n drawn from population   using SRSWOR. Ignoring fpc term, Searls (1964) 

suggested an estimator for population mean Y as  

y
Cn

n
t

y

21
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Hansen and Hurwitz (1946) suggested an unbiased estimator of the population mean  Y

of the study variable y as   
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By ignoring correction factor   f1  for ease of computations, we have
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see Ahmed et al (2017, p. 8437). 

     Motivated by Searls (1964), Khare and Kumar (2009, 2011) envisaged an improved 

version of Hansen and Hurwitz (1946) estimator *y  as 

,*yat   

where „a‟ is the suitably chosen constant to be determined such that MSE of t is 

minimum. 

The MSE of t is given by  
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Using (1.3) in the above expression, we have 
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Under the assumption that 
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Khare and Kumar (2009, 2011) and Ahmed et al (2017) derived an estimator of opta  as 
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Thus the improved version of Hansen and Hurwitz (1946) for population mean Y of y is 

given by   
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which has the MSE 
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Here we mention that Khare and Kumar (2009, 2011) assumed that 
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Keeping this in view, we suggest the following estimator for the population mean  Y  as 
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The MSE of  3t  is given by 
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where   222

2

2

11   kW
n

C
A

y
 and    11 2

2

 kW
n

C
B

y
. 

1.2 SUGGESTED IMPROVED MODEL 

Motivated by Diana et al (2014) and Ahmed et al (2017) we have suggested the 

following linear scrambled RR model. 

          Let Z be the scrambled response and ( 1V , 2V ) be two independent random variables 

unrelated to the study variable y, with known means  
21

, vv   and variances  22

21
, vv   . 

Let 21 VYVZ   ,                                                                                                        (1.8) 

  ,
21 vvR YZE                                                                                                      (1.9) 

and   2222

21 vvR YZV   ,                                                                                       (1.10) 

where  RR VE , are expectation and variance under randomization device and   is 

suitably chosen scalar. 

In order to increase trust in the respondents about their privacy security, it is 

presumed that the interviewer is fully unaware of the numbers created by the respondents 

from the scrambling distributions 1V  and 2V .  

Let iyˆ  be the transformation of RR of the i
th

 unit whose expectation under the

randomization mechanism coincides with the true response iy as 
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 and 

  iiR yyE 
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The variance of iyˆ  is given by
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Following Diana et al (2014) we propose the following unbiased estimator for Y as 
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We note that the unknown y,2 can be calculated by two possible methods, one of 

which is to use good guesses from previous work or pilot surveys, and otherwise the 

sample estimate must include details on the second moment taking into account its 

sensitive nature, see Diana and Perri (2010), Diana et al (2014) and Ahmed et al (2017). 

We mention that if we set 1 in the model (1.8), it reduces to the Ahmed et al 

(2017) model  
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Putting 1 in (1.14) we get the  )ˆ( *yVar  as 
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It is to be mentioned that Diana et al (2014) have made a tradeoff between 

efficiency and confidentiality by selecting a suitable scrambled response among different 

models because efficiency and confidentiality walk in opposite direction. So it is hard to 

keep both of these on a desired level for a fixed sample size. These lead authors to make 

an effort to improve efficiency at a fixed level of confidentiality, (see Ahmed et al (2017, 

p.8439)). To fulfill this objective, we have made an effort to formulate some estimators

of population mean of a quantitative study variable using known coefficient of variation 

of the study variable which is more efficient than Diana et al (2014) and Ahmed et al 

(2017).  

From (1.14) and (1.18) we have  
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which is non-negative if   01 2 

i.e. if   1 . (1.19) 

Expression (1.19) shows that the propounded estimator 
*ˆ
y  is always better than 

Diana et al (2014) estimator *ŷ  as long as the condition 1  is satisfied. 

Thus to obtain the better estimates from the propounded model we will put the 

restriction on   as 1  i.e.  
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where   is a scalar such that 1 . 
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The bias and MSE of st̂  are respectively given by 
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If we set    1,1,   in (1.21), the estimator st̂  reduces to the estimator due to Ahmed et 

al (2017): 
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Putting    1,1,   in (1.22) and (1.23) respectively we get the bias and MSE of the 

Ahmed et al (2017) estimator **ŷ as 
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Further we define the following estimators for population mean  Y  as 
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The bias and MSE of 1ŝt  and 2ŝt  
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   YBBtB s   1ˆ
1 ,     (1.29) 

  Y
Cn

C
tB

y

y

s 
















2

2

2
ˆ , (1.30)

     
 

   
















nN

kS
BS

n

kW
B

n

S
AtMSE

r

y

y

s

2

2

2
2

2

1 21
1

211ˆ 

 . (1.31) 

 
   

   

































N

kS
SkW

Cn

n

Cn

S
tMSE

r

y

yy

y

s

2

2

22222

2

2 1ˆ 
,

 
 






























































nN

kS

n

C
S

n

kW

n

C

n

S

n

C ry

y

yyy

22

2

2
2

222

21
1

211
 . (1.32) 



139 

1.4 EFFICIENCY COMPARISON 

From (1.23), (1.31) and (1.32)  we have 
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Expressions (1.33) and (1.34) give the inequality 
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It follows that the proposed estimator st̂  is better than 1ŝt  
and 2ŝt .

From (1.14) and (1.32) we have 
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which gives the inequality 

  )ˆ(ˆ *

2 yVartMSE s  . (1.36) 

Further from (1.19) we note that  

   ** ˆˆ yVaryVar    provided 1 . (1.37) 

Combining (1.35), (1.36) and (1.37) we have the inequality: 
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It follows from (1.38) that the propounded estimator st̂  is more efficient than 1ŝt ,

2ŝt ,
*

y  and Diana‟s et al (2014) estimator 
*ŷ  provided 1 . However the propounded

estimator st̂  is always more efficient than 1ŝt , 2ŝt  and *ˆ
y . Here we note that the proposed

estimator st̂  depends upon the parameter Y under investigation which prevents the 

practical utility of the estimator st̂  while the estimators 1ŝt and 2ŝt  are free from such

restrictions therefore the estimators ( 1ŝt , 2ŝt ) can be used in practice without any

restriction. 

Further we note from (1.14) and (1.23) that 
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Under the assumption   ,0,22
2   yy SS  (1.39) reduces to 
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which is non-negative if 
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i.e if    011
2

2  kW and    011 2  kW ,both conditions are satisfied for 1k . 

This shows that the proposed estimator st̂  performs better than the suggested 

estimator *ˆ
y  and hence it is more efficient than Diana et al (2014) estimator *ŷ . 

Further from (1.39) we have that    *ˆˆ
yVartMSE s   if 

 2111 Wk  , (1.40) 

Under this condition, the estimator 
*

y (and hence Diana et al (2014) estimator *ŷ ) 

may be improved by replacing a better estimator st̂  for population mean  Y  than *ŷ in 

case of non-response in sample survey. However the estimator st̂  may also be more 

efficient than *ŷ  beyond the range  211 Wk  . 

2. SOME MODELS FOR CONSIDERATION

To examine the performance of the estimators we consider four known scrambled 

RR models of additive, multiplicative and mixed nature. These models are derived from 

the general linear scrambled randomized response model earlier considered by Diana and 

Perri (2010) are showed in the following scheme.  

Table 2.1: The members of scrambled response model. 

S.No. Authors Model 
1V 2V

1.        Pollock and Bek 

(1976)-type 
1M : 2UYZ  1 

2U

2. Eichhorn and 

Hayre (1983)-type 
2M : YUZ 1 1U 0 

3. Saha (2007)-type 
3M : )( 21 UYUZ   1U 21UU

4. Diana and Perri  

(2011)-type 
4M :     YUUYZ 12 1     11 U  2U

where  is a scalar in the interval  1,0 .
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We use   4,3,2,1, jS jr  instead of 
2

rS to get the MSEs of suggested estimators under 

model 41, tojM j   respectively, where 
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The MSE of the propounded estimators under different scrambled RR models can 

be derived by putting   ,
2

1rS  
2

2rS ,  
2

3rS and  
2

4rS in place of 
2

rS  in expression 

respective of MSE. 

If we set 1  in   41, tojS jr  and we use  jrS instead of 
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*

1M :  2UYZ  Additive model due to Pollock and Bek(1976),  

*

2M :  YUZ 1  Multiplicative model due to Eichorn and Hayre (1983), 

*

3M :  )( 21 UYUZ  Mixed model 1 due to Saha (2007), 

*

4M :      YUUYZ 12 1   Mixed model 2 due to Diana and Perri (2011). 

        The MSE‟s of the estimators under scrambled randomized response models

41,* tojM j   can be obtained by inserting   41,2 tojS jr   in place of 
2

rS  in expression 

respective of MSE. 
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3. THE PROPOSED CLASS OF ESTIMATORS

 We define an estimator for Y  as 

3,2,1,ˆˆ ***  jyQy jj   ;  (3.1) 
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We consider the situation, where non response occurs only on study variable y  and 

the complete information on x is available in the second-phase sample of size n and also 

the population mean X of the non-sensitive auxiliary variable x is not known . 

Reference is made here that, when proposing the estimator of the population mean

Y , Okafor and Lee (2000), Diana et al (2014) and Ahmed et al (2017) used only the 

information on the second phase sample mean nxx
n

i

i



1

 and on the first-phase sample 

mean '

1

'

'

nxx
n

i

i


 . However, one can also obtain the unbiased estimator 

2
2

1
1* x

n

n
x

n

n
x  , of  X ( without any extra effort, while in the process of obtaining  

2
2

1
1* y

n

n
y

n

n
y  , the unbiased estimator of the population mean  Y , see Diana et al 

(2014), Ahmed et al (2017) and Singh and Kumar (2008,2009). Thus in this situation we 

have two unbiased estimators *x  and x , of the population mean  X  of the non-sensitive 

auxiliary variable x at second phase. 

Let 
'* xxu  , 

'xxv    . Whatever be the sample chosen, let (u,v) adopt values in 

a bounded, closed convex subset, S, of the two dimensional real space enclosing the point 

„(1,1)‟. Let  vuh ,  be a function of (u,v) such that   11,1 h and it satisfies the following 

conditions: 

1. In S, the function  vuh ,   is continuous and bounded.

2. The first and second order partial derivatives of  vuh ,  exist and are continuous and

bounded in S.

With this background and motivated by Srivastava (1971), we define the class of 

estimators of the population mean , Y , of the study variable y as 
    .3,2,1,,ˆˆ **  jvuhyy j

j

hd (3.2) 
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Any parametric function  vuh ,  satisfying the above condition can be considered as 

an estimator of the population meanY . The class of such estimators is very vast. Some 

members of class of estimators hdŷ  are: 
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etc . with 3,2,1j ; where j  and j  , 3,2,1j ; are suitably chosen constants to be 

determined such that the MSEs of the estimators are minimum. 

The bias and MSE of the class of estimators, 
 j
hdŷ , exist since the number of 

possible samples is finite and we assume that the function is bounded. Expanding  vuh ,  

about the point    1,1, vu  by a second order Taylor‟s series, we obtain 
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The MSE of 
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Taking expectation of both sides of (3.4) we get the 
  j

hdyMSE ˆ  as
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3 21 Q , and  ***

3 1 Q . 

PARTICULAR CASE – To illustrate our general outcomes we deliberate the following 

class of estimators for population mean Y as 

 
  jj vuyy j

j

hd

**

1
ˆˆ  (3.9) 

where jj and  are suitably chosen constants and 3,2,1j . 

It is observed from (3.5) that 
  j

hdyMSE ˆ depends on the derivatives  1,11h ,  1,12h , 

 1,111h ,  1,112h and  1,122h . So to obtain the MSE of the estimator  
  3,2,1,ˆ

1 jy j

hd , we 

have the values of  1,11h ,  1,12h ,  1,111h ,  1,112h and  1,122h for the function 
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Putting the values of  1,11h ,  1,12h ,  1,111h ,  1,112h and  1,122h  in (3.5) we get the MSE 

of  
 j
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Thus the resulting minimum MSE of  
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ˆ  is given by 
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Now we state the following theorem. 

THEOREM 3.1- The MSE of   
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with equality holding if 
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Minimization of (3.13), (3.14) and (3.15) yields the optimum values of  11, ,  22 ,

and  33,

        

      
        

       















2

131211

14131511

102

131211

15131412

10
AAA

AAAA
and

AAA

AAAA
 , (3.16) 

        

      
        

       















2

232221

24232521

202

232221

25232422

20
AAA

AAAA
and

AAA

AAAA
 ,          (3.17) 

        

      
        

       















2

333231

34333531

302

333231

35333432

30
AAA

AAAA
and

AAA

AAAA


 

 . (3.18) 

Thus the resulting minimum MSE‟s of  
 1

1
ˆ

hdy ,  
 2

1
ˆ

hdy  and  
 3

1
ˆ

hdy  are respectively given by 

 
                 

      2

131211

2

1511151413

2

14)1(22**

1

1

1min

2
ˆˆ

AAA

AAAAAAA
YyMSEyMSE hd




 , (3.19) 

 
                 

      2

232221

2

2521252423

2

24)2(22**

2

2

1min

2
ˆˆ

AAA

AAAAAAA
YyMSEyMSE hd




 , (3.20) 

 
                 

      2

333231

2

3531353433

2

34)3(22**

3

3

1min

2
ˆˆ

AAA

AAAAAAA
YyMSEyMSE hd




 . (3.21) 

Expressions (3.19), (3.20) and (3.21) clearly show that the proposed estimators  
 1

1
ˆ

hdy , 

 
 2

1
ˆ

hdy  and  
 3

1
ˆ

hdy  are more efficient than the estimators
**

1ŷ , 
**

2ŷ   and 
**

3ŷ  respectively. 

3.1 SPECIAL CASE I- Putting 0j in (3.9) we get a class of estimators of the 

population mean Y as  

juyy jj




**ˆˆ  ; 3,2,1j .       (3.22) 

Putting 0j  in (3.10) we get the MSE of jy
ˆ  as

        jjjjjj AAYyMSEyMSE 41

22** 2ˆˆ   ,         (3.23) 

which is minimum when 

 

 

 say
A

A
j

j

j

j

*

0

1

4
   . (3.24) 

Thus the resulting minimum MSE of jy
ˆ  is given by

     

 j

j

jj
A

A
YyMSEyMSE

1

2

42**

min
ˆˆ   . (3.25) 

Now, we arrived at the following theorem. 

THEOREM 3.2- To the first degree of approximation, 
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     

 j

j

jj
A

A
YyMSEyMSE

1

2

42**

min
ˆˆ  , (3.26) 

with equality holding if 

 

 

.3,2,1,
1

4
 j

A

A

j

j

j  

Putting 3,2,1j  in (3.23) we get the MSE‟s of the estimators 1**

11
ˆˆ 

 uyy 
,

2**

22
ˆˆ 

 uyy 

and 3**

33
ˆˆ 

 uyy  (due to Ahmed et al (2017) for 11   and ) respectively as 

        14111

2

1

2**

11 2ˆˆ AAYyMSEyMSE   , (3.27) 

        24221

2

2

2**

22 2ˆˆ AAYyMSEyMSE   , (3.28) 

        34331

2

3

2**

33 2ˆˆ AAYyMSEyMSE     . (3.29) 

which  are respectively minimized for  

   
*

1011141   AA , (3.30) 

   
*

2021242   AA , (3.31) 

   
*

3031343   AA . (3.32) 

Thus the resulting minimum MSE of  1
ˆ
y , 2

ˆ
y  and 3

ˆ
y are respectively given by 

     

 11

2

142**

11min
ˆˆ

A

A
YyMSEyMSE  , (3.33) 

     

 21

2

242**

22min
ˆˆ

A

A
YyMSEyMSE  , (3.34) 

     

 31

2

342**

33min
ˆˆ

A

A
YyMSEyMSE  . (3.35) 

From (3.12) and (3.25) we have  

   
           

        
3,2,1;ˆˆ

2

3211

2

43512

1minmin 



 j

AAAA

AAAA
YyMSEyMSE

jjjj

jjjjj

hdj (3.36) 

which is non-negative. 

Thus the proposed class of estimators  
 j
hdy 1

ˆ  is more efficient than jy
ˆ , 3,2,1j .

If we set 11andj   in (3.21) we get the ratio and product type estimators for Y

respectively as 

  







 *

'
**

1
ˆˆ

x

x
yy jj , (3.37) 
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  









'

*
**

1
ˆˆ

x

x
yy jj . (3.38) 

Putting 11andj   in (3.23) we get the MSE‟s of   1
ˆ

jy  and  1
ˆ

jy  respectively as 

         jjjj AAYyMSEyMSE 41

2**

1 2ˆˆ  , (3.39) 

         jjjj AAYyMSEyMSE 41

2**

1 2ˆˆ   . (3.40) 

Remark 3.1 

For    1,1,,3  j , the class of estimators 3**

33
ˆˆ 

 uyy   reduces to the estimator 

   
3**

33
ˆˆ 

 uyy AA  (3.41) 

which is due to Ahmed et al (2017), where 

    *

1

2

2

2

2

**

3
ˆ111ˆ y

Y

S

nN

k
k

n

n

n

C
y

ry

A
























 . 

For 113 and , the class of estimators  Ay 3
ˆ
  reduces to the estimators respectively as 

    







 *

'
**

313
ˆˆ

x

x
yy A , (3.42) 

    









'

*
**

313
ˆˆ

x

x
yy A . (3.43) 

The MSEs of  Ay 3
ˆ
 ,  13

ˆ
y and  13

ˆ
y  are respectively given by 

          34331

2

3

2**

33 2ˆˆ AAYyMSEyMSE AA  

       yxx ABABYyMSE *

33

*

33

2** 3121ˆ   , (3.44) 

          3431

2**

313 2ˆˆ AAYyMSEyMSE A  ,

      
        2

*2

2

*

*2**2**

31241

31241ˆ

yxx

yxx

CBCB

CBCBYyMSE








, (3.45) 

          3431

2**

313 2ˆˆ AAYyMSEyMSE A  ,  

            2

**2

2

2**2** 31221ˆ
yxyxxx CCBCCBYyMSE   ,   (3.46) 

where 

          
 

































2

22

2

2
2*

2

*****

3 1
1

211ˆˆ
Y

S

nN

k

nN

kS
S

n

kW
B

n

S
AyMSEyMSE

rr

y

y

A
.     (3.47) 

3.2 SPECIAL CASE –II- Putting 0j in (3.9) we get a class of estimators of the 

population mean Y as 
jvyy jj




**ˆˆ  ; 3,2,1j (3.48) 
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Putting 0j  in (3.10) we get the MSE of jy
ˆ  as

        jjjjjj AAYyMSEyMSE 52

22** 2ˆˆ   , (3.49) 

which is minimum when 

 

 

 say
A

A
j

j

j

j

*

0

2

5
  . (3.50) 

Thus the resulting minimum MSE of jy
ˆ  is given by

     

 j

j

jj
A

A
YyMSEyMSE

2

2

52**

min
ˆˆ  . (3.51) 

Now we state the following theorem. 

THEOREM 3.3- To the first degree of approximation, 

     

 j

j

jj
A

A
YyMSEyMSE

2

2

52**

min
ˆˆ  , (3.52) 

with equality holding if 
 

 

.3,2,1,
2

5
 j

A

A

j

j

j  

Putting 3,2,1j  in (3.49) we get the MSE‟s of the estimators 1**

11
ˆˆ 

 vyy 
,

2**

22
ˆˆ 

 vyy 

and 3**

33
ˆˆ 

 vyy  (due to Ahmed et al (2017) for 11   and ) respectively as 

        15112

2

1

2**

11 2ˆˆ AAYyMSEyMSE   , (3.53) 

        25222

2

2

2**

12 2ˆˆ AAYyMSEyMSE   , (3.54) 

        35332

2

3

2**

13 2ˆˆ AAYyMSEyMSE    . (3.55) 

which  are respectively minimized for 

   
*

1012151   AA , (3.56) 

   
*

2022252   AA , (3.57) 

   
*

3032353   AA  . (3.58) 

Thus the resulting minimum MSE of 1
ˆ
y , 2

ˆ
y  and 3

ˆ
y are respectively given by 

     

 12

2

152**

11min
ˆˆ

A

A
YyMSEyMSE  , (3.59) 

     

 22

2

252**

22min
ˆˆ

A

A
YyMSEyMSE  , (3.60) 

     

 32

2

352**

33min
ˆˆ

A

A
YyMSEyMSE  . (3.61) 

From (3.12) and (3.44) we have  
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   
           

        
3,2,1;ˆˆ

2

3212

2

53422

1minmin 



 j

AAAA

AAAA
YyMSEyMSE

jjjj

jjjjj

hdj ; (3.62) 

which is non-negative. 

Thus the proposed class of estimators  
 j
hdy 1

ˆ  is more efficient than jy
ˆ , 3,2,1j .

If we set 11andj   in (3.48) we get the ratio and product type estimators for Y

respectively as 

  









x

x
yy jj

'
**

1
ˆˆ

 , (3.63) 

  









'

**

1
ˆˆ

x

x
yy jj

. (3.64) 

Putting 11andj   in (3.49) we get the MSE‟s of   1
ˆ

jy  and  1
ˆ

jy  respectively as 

         jjjj AAYyMSEyMSE 52

2**

1 2ˆˆ   , (3.65) 

         jjjj AAYyMSEyMSE 52

2**

1 2ˆˆ   , (3.66) 

Remark 3.2  

For    1,1,,3  j , the class of estimators 3**

33
ˆˆ 

 vyy   reduces to the estimator 

   
3**

33
ˆˆ 

 vyy AA  (3.67) 

which is due to Ahmed et al (2017). 

 For 113 and , the class of estimators  Ay 3
ˆ
  reduces to the estimators respectively as 

    









x

x
yy A

'
**

313
ˆˆ

 , (3.68) 

    









'

**

313
ˆˆ

x

x
yy A

. (3.69) 

The MSEs of  Ay 3
ˆ
 ,  13

ˆ
y and  13

ˆ
y  are respectively given by 

          35332

2

3

2**

33 2ˆˆ AAYyMSEyMSE AA   ,

       yxx CBCBYyMSE *2

3

*

3

*

3

2** 31213ˆ   , (3.70) 

          3532

2**

313 2ˆˆ AAYyMSEyMSE A  ,

      yxx CBCBYyMSE *2**2** 31241ˆ   , (3.71) 

          3532

2**

313 2ˆˆ AAYyMSEyMSE A  ,

      yxx CBCBYyMSE *2**2** 31221ˆ   .   (3.72) 

We note that the MSEs of the estimators  Ay 3
ˆ
 ,  Ay 3

ˆ
 ,  13

ˆ
y ,  13

ˆ
y and  13

ˆ
y ,

 13
ˆ
y  given in ((3.44), (3.70)), ((3.45),(3.71)) and ((3.46), (3.72)) respectively are correct 
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while the MSE‟s of these estimators obtained by Ahmed et al (2017, equations 

(19),(21),(23), (24), (25), (26), pp. 8443-8444) are not correct. Resulting the MSE‟s of 

the estimators 21 , tt , 
'

2

'

1 ,TT and
'

3T ,
'

4T  reported by Khare and Kumar (2011, equations 

(2.10), (3.9)and (3.10)) are also not correct. 

4. EMPIRICAL STUDY

Data [Source: Khare and Kumar (2011) and Ahmed et al (2017)] 

y : Number of cultivators, and  x: Population of villages. 

The proportion of non-respondents in the population is 25%, so we consider last 24 units 

of population as non-respondents. It is also assumed that 21 VandV  are scrambled 

variables each distributed uniformly in the interval [0, 1]. The summary statistics are: 

     

.2f 0.0833, = 0.0833, = 0.50, = 0.50, =   0.895, =  0.904, = 

 93560.01, = S338835.88, = S   1068.44, = S 97.82, = S   1921.77, = S 

 195.03, =S1571.71, = X. 128.46, =Y   1807.23, = X   185.22, = Y 25, =n    96, = N

h

2

v2

2

v12v12

2yxyx2x2yx

y22

 v

We have computed the MSEs (MSE‟s) of the suggested classes of estimators  
 j
hdy 1

ˆ
,

jy
ˆ and jy

ˆ , 3,2,1j  and also  find the MSE‟s of  st , 1st and 2st for the given data set and 

findings are presented in Table 4.1 

Table 4.1 demonstrates that the MSE‟s of the members  
 1

1
ˆ

hdy ,  
 2

1
ˆ

hdy  and  
 3

1
ˆ

hdy  are 

less than the suggested estimators 2ŝt , 1ŝt and st̂ . Further we note that the class of

estimators  
  3,2,1;ˆ

1 jy j

hd  is more efficient than *ˆ
y (modified Ahmed et al (2017) 

estimator) and Diana et al (2014) estimator *ŷ . Thus we infer that the proposed class of 

estimators  
 j
hdy 1

ˆ  is more efficient and more flexible than the other existing estimators. 

5. CONCLUSION

In this paper we have considered the problem of estimating the population mean in 

presence of non- response using auxiliary information when the coefficient of variation 

of study variable y  is known. We have improved the Ahmed et al (2017) model. We 

have further derived an improved estimator *ˆ
y  with that of Diana et al (2014) estimator 

*ŷ and found that the estimator *ˆ
y  is more efficient than the Diana et al (2014) estimator 

*ŷ under very realistic condition. A class of estimators *ˆˆ
yMts   and finally obtained the 

estimator st̂ with known Coefficient of variation yC  for population meanY is defined. 

Using two different values of M, we have also obtained the two different estimators 1ŝt
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and 2ŝt . It is also shown that the estimator **ŷ due to Ahmed et al (2017) is a member of 

the suggested estimator st̂ . It has been shown that the proposed estimator st̂  is more 

efficient than the estimators 1ŝt , 2ŝt , *ˆ
y  and *ŷ  under very realistic condition 1  . With 

this discussion we inferred that the suggested estimator st̂  is more efficient as well as 

more flexible than Ahmed et al (2017) estimator **ŷ  and Diana et al (2014) estimator *ŷ

.Making the use of non-sensitive auxiliary variable x we have suggested a very general 

class of estimators
  3,2,1,ˆ jy j

hd ; for estimating the population mean Y . The bias and

MSE of the suggested class of estimators are derived. In particular, to illustrate the result 

of general class of estimators
  3,2,1,ˆ jy j

hd ; we have obtained the bias and MSE of the 

class of estimators  
 j
hdy 1

ˆ . The optimum condition is obtained in which the MSE of  

 
 j
hdy 1

ˆ  is minimum. Two subclasses of estimators jy
ˆ  and jy

ˆ  from the proposed class of

estimators  
  3,2,1,ˆ

1 jy j

hd ; are identified alongwith their properties. It has been shown 

that the proposed class of estimators  
 j
hdy 1

ˆ  is better the classes of estimators jy
ˆ  and jy

ˆ ,

3,2,1j . In support of the current study, an empirical study will be carried out. 
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Table 4.1:  The MSEs of the suggested classes of estimators 

MSEs Values of   

-1 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1 

)ˆ( *

yMSE 1790.8975 1790.8946 1790.8925 1790.8913 1790.8909 1790.8913 1790.8925 1790.8946 1790.8975 

)ˆ( *yMSE  

 
  1

1min
ˆ

hdyMSE 1205.398 1205.396 1205.394 1205.393 1205.392 1205.393 1205.394 1205.396 1205.398 

 1min
ˆ
yMSE 1206.185 1206.182 1206.18 1206.179 1206.178 1206.179 1206.18 1206.182 1206.185 

 1min
ˆ
yMSE 1276.197 1276.194 1276.192 1276.191 1276.19 1276.191 1276.192 1276.194 1276.197 

 
  2

1min
ˆ

hdyMSE 1202.563 1202.561 1202.559 1202.558 1202.557 1202.558 1202.559 1202.561 1202.563 

 2min
ˆ
yMSE 1203.342 1203.339 1203.337 1203.336 1203.336 1203.336 1203.337 1203.339 1203.342 

 2min
ˆ
yMSE 1272.997 1272.994 1272.992 1272.991 1272.991 1272.991 1272.992 1272.994 1272.997 

 
  3

1min
ˆ

hdyMSE 1206.696 1206.694 1206.692 1206.691 1206.69 1206.691 1206.692 1206.694 1206.696 

 3min
ˆ
yMSE 1207.461 1207.459 1207.457 1207.455 1207.455 1207.455 1207.457 1207.459 1207.461 

 3min
ˆ
yMSE 1276.47 1276.467 1276.465 1276.464 1276.464 1276.464 1276.465 1276.467 1276.47 

 stMSE ˆ =

 **

3ŷMSE

1692.407 1692.405 1692.403 1692.402 1692.401 1692.402 1692.403 1692.405 1692.407 

 1ŝtMSE =

 **

2ŷMSE

1698.287 1698.285 1698.283 1698.282 1698.281 1698.282 1698.283 1698.285 1698.287 

 2ŝtMSE =

 **

1ŷMSE

1703.89 1703.89 1703.89 1703.89 1703.89 1703.89 1703.89 1703.89 1703.89 
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Abstract
Alcohol use is a known risk factor of many ill health conditions like neuropsychiatric disorders, and non-
communicable diseases. In the presence of hierarchical structure in data, multilevel regression model is often
suggested to obtain more accurate analytical results regarding epidemiological understanding. Aim of this
study was to find factors associated with alcohol use among adolescents and assess comparative findings under
conventional and multilevel logistic models. Under this study, data of 37033 adolescents (15–19 years old)
available under National Family Health Survey-3 (2005–2006) was utilized. The performance of the models was
evaluated by the log-likelihood values, area under the ROC curve, AIC and BIC. As per findings of this study,
socio-demographic variables likely to be positively associated with the chance of alcohol use among adolescents
were low education, employment, caste other than Non-SC/ST, advancing age and male gender. Adolescents
belonging to alcohol using households were more likely to use alcohol than their counterparts. Among the state
level variables, adolescents belonging to states having prevalence of alcohol users above 12.5% and that of literacy
rate (10th and above) below 30.8% were more likely to use alcohol. This study revealed that low education of
adolescents and higher prevalence of alcohol use in the state are important factors to encourage alcohol use
among adolescents. Interestingly, although associated factors under multilevel model also remained similar, the
model performance parameters showed efficacy of multilevel model in comparison to conventional logistic model.
Keywords: Alcohol Use, Adolescents, Logistic regression Multilevel Model, Median Odds Ratio, intra-class
correlation, 80% interval odds ratio

1 Introduction
Alcohol use is the third leading risk factor for poor health globally. According to W.H.O., 3.3 million deaths
in 2012 may be attributed to harmful use of alcohol. Harmful use of alcohol contributes 5.9 % of all deaths
in the world and 5.1% of the global burden of disease measured in the form of disability-adjusted life years
lost. Worldwide, 38.3% consume alcohol and on average individuals of age 15 years or above consume 6.2
litres of alcohol annually [1]. It contributes too many ill health conditions like neuropsychiatric disorders,
non-communicable diseases (e.g., cardiovascular diseases, cirrhosis of the liver, cancers), infectious diseases
(e.g., HIV/AIDS, tuberculosis and pneumonia) and unintentional or intentional injuries (e.g., due to road
traffic crashes and violence), and suicides [2]. In India, alcohol related problems account for more than
one fifth of hospital admissions, 18% of psychiatric emergencies, more than 20% of all brain injuries, and
60% of all injuries reporting for emergency care [3]. Out of nearly 70 million alcohol users in India, 12

© 2023 Author(s). (https://www.thegsa.in/).
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million were alcohol dependent [4]. According to national household survey of drug abuse, prevalence of
ever alcohol use was 21.4% [5]. National Family Health Survey (NFHS-3) [6] revealed that prevalence of
alcohol use in males (age 15-54 years) and females (age 15-49 years) were 32% and 2.2% respectively.
Also, among 15-19 years old males, its prevalence was 11% and among females its prevalence was 1%.
According to Global status report on alcohol and health by WHO [1], alcohol consumption increased in
India during the period from 2008 to 2012. According to it, around 26 % of total population of India is
ever alcohol users. The per capita consumption of alcohol in India also increased from 1.6 to 2.2 litres from
2003-2005 to 2010-2012. The adolescents are the future of a country and they often try new things to
taste the world without thinking about pros and cons. As such, they are targeted by the alcohol companies.
According to census 2011, 40.7% of the Indian population was less than 20 years of age and 20.9% were in
the age group 10-19 years. Therefore, adolescents are needed to be handled gingerly because they are more
probable to adapt the risk behavior like alcohol use. Surprisingly, in our county, a minimal attention has
so far been given on understanding the determinants of alcohol use among adolescents. Also, in the fields
of medical, social, and other sciences, characteristics of individuals get easily influenced by neighborhoods
like community, district or state where they reside. In case of dichotomous outcome, the conventional
logistic regression model assumes that all records are independent without taking into account existing
hierarchical structure in the data [7,8]. Hence, virtually required assumption of independence does not get
fulfill which results into underestimation of the standard errors of the parameters. In view of this, obtained
inaccurate analytical results tend to inappropriate public health implications. Therefore, this study aimed
to find out factors associated with alcohol use among adolescents and their comparative appraisal between
the conventional and multilevel regression models.

2 Materials and Methods
Data was extracted on adolescents of age group 15-19 years from third round of the National Family
Health survey (NFHS-3)[6]. This survey was done among 29 states in 2005–06 across India. NFHS-3
mainly provides national and state level estimates of, infant and child mortality, family planning, fertility,
reproductive and child health, the quality of health and family welfare services and nutrition of women
and children. Multistage sampling design with two stage design in rural areas and a three stage design in
urban areas was used to select 109041 households. As such, a total of 124,385 females aged 15–49 years
and 74369 males aged 15–54 years were interviewed. Methodological details are available in its national
level report (IIPS and Macro International. 2007, NFHS-3, 2005–06: India: Volume I & Volume II). In
the survey questionnaires, there were two questions addressing self report on alcohol use. They were: (1)
Do you drink alcohol? & (ii) How often do you drink alcohol: almost every day, about once a week or less
often? Accordingly, the data on alcohol use was collected directly from adolescents (i.e., 15-19 years),
among males as well as females.

On the basis of subject knowledge and review of literatures, a set of independent or exploratory variables
were selected for the analysis. After exploratory analysis on raw forms of variables in original data, some of
them were retained in their existing forms and others were modified to get meaningful results. The set of
independent/ exploratory variables considered in their existing forms were: age; sex (male/female); place of
residence (rural /urban); employment (yes/no); household structure (nuclear/non-nuclear); employment
of adolescent (yes/no); and tobacco use of adolescent (yes/no). Further, some qualitative variables
considered after appropriate modification were: adolescent’s education (below secondary/ secondary and
above); wealth index of household (poor or poorest/middle or high or highest), and adolescent’s marital
status (married/un-married or single). Also, religion and caste were pooled [9] to derive another variable
religion/caste (SC-ST Hindu/other Hindu/Muslim /other religion). An adolescent was categorized as
exposed to household alcohol use if any member other than him/herself uses alcohol in family. To
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take into account hierarchical structure of data in analysis, some community / state level variables were
included such as alcohol use prevalence in states (≤ 12.5% or > 12.5%) and state literacy above 10th
standard among subjects of 15 years and above (< 30.8% or ≥ 30.8%). Among these variables, state
literacy was extracted from 2011 census data and threshold level was chosen considering the national
average. However, percentage of alcohol use in states (≤ 12.5% or > 12.5%) was derived by aggregating
the proportion of alcohol users in each state and then states were categorized taking median proportion
alcohol users among states.

Ethics Statement
In spite of used data being available in public domain for academic use (http://www.measuredhs.com),
ethical clearance was obtained from institutional ethics committee.

Statistical Models
The conventional logistic regression was used to illustrate the relationship of associated variables with
alcohol use among adolescents. Under this model, the probability of using alcohol by ith adolescent in the
jth state is expressed as pij which is a function of considered associated variables [10]:

loge

[
pij

1 − pij

]
= β0 +

m∑

k=1
βkxijk

Where, βk is the coefficient of regression of the kth associated factor and xijk represents ith

adolescent’s value in jth state for kth associated factor; β0 is a constant.
Intuitively, under the above model, state level characteristics are also dis-aggregated at individual level

(i.e., adolescent’s level) that distorts the assumptions of independence. It may obviously under estimate
standard error of the regression coefficients of the variables. As a result, even a variable with a least
relevance may turn up to be significantly associated with alcohol use.

Under present study, adolescents were nested within states. The variation may prevail at both levels,
adolescent level and state level. To quantify variation at each level, multilevel analysis may be applied.
For this, based on exploratory analysis, multilevel logistic regression random intercept model involving
2-level data structure, level-1 (adolescents) and level-2 (states) was considered [8,10]:

logit(pij) = log
(

pij

1−pij

)
= β00 + βxij + δwj + uj + eij

Where,
uj ∼ N (0, σu

2) , & eij ∼ N (0, σij
2)

Where, pij is probability that ith adolescent in jth state uses alcohol.
xij and wj are vectors of individual adolescent and state level characteristics; β and δ are vectors of

estimated regression coefficients for the respective covariates.
uj: unobserved variation at state level.
eij: error terms at individual level.
The variability unexplained by considered state level covariates is estimated under multilevel regression

model by estimation of σ and given as:

log
(

pij

1 − pij

)
= β00 + βxij + δwj + σvj + eij

Where, vj ∼ N(0, 1) and therefore variability estimated by the multilevel approach known as Multilevel
effect is given by the term ‘σv’. Accordingly, if vj = 1, there will be increase in loge

(
pij

1−pij

)
by σ. On the

other hand, if vj = −1, then there will be decrease in loge

(
pij

1−pij

)
by σ.
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In the beginning, using chi-square test, association analysis was carried out for each exploratory
variable to assess its association with alcohol use among the adolescents. All variables found significant at
25% level of significance in association analysis were considered for multivariable logistic regression analysis.
Further, to begin with, the possible multi-co linearity and first order interaction effect was explored during
model building process. Non-occurrence of multi-co linearity was considered for a covariate with cut-off
point of mean of variation inflation factor (VIF) as less than five [11]. Effect modifier was explored by
two methods; first was stratified analysis with confidence interval approach, and second was multivariable
regression approach. However, among the considered variables in this study, none of them was found to
be either multi-collinear or effect modifier. Stepwise regression approach with entry probability of 0.10 and
an exit probability of 0.15 was used under conventional multivariable logistic regression analysis. Further,
a maximum likelihood approach was used for parameter estimation.

Keeping in view of comparative appraisal, multivariable multilevel logistic regression with random
intercept analysis was also performed on similar set of covariates as those under multivariable conventional
logistic regression. The log likelihood for this model was approximated by maximum likelihood estimation
with adaptive Gaussian quadrature [12].

The area level variance was assessed by median odds ratio, 80% interval odds ratio, and intra-
class correlation. The social, economic, health facilities and other characteristics of one state are likely to
be different from another state. Further, all adolescents in a state share same state level characteristics.
Intra-class correlation measures the proportion of total variance in the outcome that is attributable to
the state level characteristics [13]. Median Odds Ratio (MOR) proposed by Larsen & Merlo (2005) [13]
transforms the state level variance to the odds ratio scale. It is the median of the set of odds ratios that
could be calculated by comparing the randomly chosen two adolescents, one from low risk state and other
from high risk state with identical individual level covariates. If MOR is one, it implies that the area level
variation is close to zero and if greater than one, there exits considerable amount of state level variation.
An 80% Interval Odds Ratio (IOR-80) is another index used for describing the state level variability [13].
It is the measure of a fixed-effect which quantifies the effect of state-level variables. It is middle eighty
percent of the range of all odds ratio evaluated for state level variables from each pair of all probable pairs
of adolescents with identical individual-level risk factors from different states but who differ by one level
in state-level risk factors. If the IOR-80 does not include unity, it precisely means that specific state level
variable describes the area level variability substantially. In spite of this, if interval is wider or includes 1,
it implies that area level variability is minimally explained by specific state level variable [13].

Predictive performance of the developed models was compared using indices such as Log-
likelihood, Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC) and area under re-
ceiving operative curve analysis (ROC). Higher values of Log-likelihood and ROC and lower values of AIC
and BIC indicate better fit of the model. The analysis was carried out on Stata software (version 14) and
p-value less than 0.05 was considered as significant.

3 Results
In NFHS-3, out of 37025 adolescents (15-19 years), 1884 (5.09%) were alcohol users. Among these
adolescents, sixty five percent were female, and more than half of them (54%) were from rural area with
mean age (±SD) 17.0±1.3 years. Bivariate analysis (Tables 1(a) & 1(b)) showed that adolescents who
were male (OR=7.4, 95%CI: 6.69– 8.13), educated below secondary school (OR=1.6, 95%CI: 1.47-1.79)
and belong to non-nuclear family (OR=1.1, 95%CI: 1.03–1.24), were significantly more likely to use
alcohol. On the other-hand, adolescents residing in a state with low level of 10th standard and above
literacy had higher chance of using alcohol (OR=1.4, 95%CI: 1.28-1.55). Similar finding was observed in
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case of wealth status (OR=1.6, 95%CI: 1.43-1.74).

Table 1(a): Association of alcohol use among adolescents with individual level socio-economic & demographic
factors

Characteristic
Alcohol Use

Un-adjusted

Odds Ratio (95%C.I.)
Yes

f(%)

No

f(%)

Age(years) Mean ± SD 17.5 ± 1.3 16.9 ± 1.4 1.3 (1.26,1.37)

Sex

Female 352 (1.5) 23596 (98.5) 1

Male 1532 (11.7) 11545 (88.3) 7.4 (6.69,8.13)

Residence

Urban 784 (4.6) 16236 (95.4) 1

Rural 1100 (5.5) 18905 (94.5) 1.2 (1.09,1.32)

Household structure

Nuclear 956 (4.8) 18905 (95.2) 1

Non-nuclear 928 (5.4) 16236 (94.6) 1.1 (1.03,1.24)

Wealth Index

Richer/Richest/ Middle 1224(4.5) 26206(95.5) 1

Poorest/Poorer 660 (6.9) 8935 (93.1) 1.6 (1.43,1.74)

Caste or Religion

Hindu(non SC/ST) 687 (3.8) 17248 (96.2) 1

Hindu(SC/ST) 567 (7.3) 7247 (92.7) 1.9 (1.75,2.20)

Muslim 80 (1.4) 5764 (98.6) 0.3 (0.28,0.44)

Others religions 539 (10.3) 4674 (89.7) 2.9 (2.57,3.26)

Education

Secondary & above 1222 (4.4) 26371(95.6) 1

Illiterate/Primary 662 (7.1) 8761 (92.9) 1.6 (1.48,1.79)

Marital status

Unmarried/Single 1673 (5.2) 30288 (94.8) 1

Married 211 (4.2) 4853 (95.8) 0.8 (0.68,0.91)

Employment

Unemployed 769 (3.1) 24597 (96.9) 1

Employed 1115 (9.6) 10465 (90.4) 3.4 (3.10,3.74)

Exposure to media

No 123 (3.9) 2983 (96.1) 1

Yes 1761 (5.2) 32140 (94.8) 1.3 (1.10,1.60)

Tobacco use

No 592 (1.8) 31634 (98.2) 1

Yes 1292 (26.9) 3507 (73.1) 19.7 (17.7,21.82)

Table 1(b): Association of alcohol use among adolescents with household level & states level factors
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Characteristic
Current Alcohol Use

Un-adjusted

Odds Ratio (95%C.I.)
Yes

f(%)

No

f(%)

Family alcohol use

No 745 (3.1) 23696 (96.9) 1

Yes 973 (9.9) 8811 (90.1) 3.5 (3.18,3.88)

Literacy rate

(10th and above) in State

≥ 30.8% 710 (4.2) 16158 (95.8) 1

< 30.8% 1174 (5.8) 18983 (94.2) 1.4 (1.28,1.55)

Prevalence of alcohol

use in state

≤ 2.5% 568 (3.5) 18118 (96.5) 1

> 12.5% 1316 (9.1) 17023 (90.9) 2.5 (2.23,2.73)

Under multivariable logistic regression analysis (Table 2(a)), the statistically significant socio-
demographic, household and state level variables associated with alcohol use were gender, age, caste
or religion, marital status, employment, education, tobacco use of adolescents, household member’s
alcohol use, and state level prevalence of alcohol use among adults, and prevalence of 10th and above
education. Adolescents belonging to Schedule tribe caste AOR=1.4, (95%CI: 1.24–1.64) or other religions
AOR=1.9, (95%CI: 1.68–2.26) as compared to Non–Scheduled Caste or Tribe; and who were married
AOR=1.4, (95%CI: 1.15–1.77) were more likely to use alcohol. However, Muslim adolescents were less
likely to use alcohol as compared to Non–SC/ST AOR=0.3, (95%CI: 0.24–0.39). Further, adolescents
who had education below secondary level were 40 percent more chance to use alcohol as compared to
their counterparts AOR=1.4, (95%CI: 1.18–1.55). Also, adolescents who were employed, has 40 percent
higher chance AOR=1.4, (95%CI: 1.27–1.64). As obvious, tobacco using adolescents had more than
8-fold higher chance AOR=8.2, (95%CI: 7.24–9.27) of using alcohol. Among household level variables
(Table 2(b)), adolescents exposed to household level alcohol use had more than two-fold chance to use
alcohol AOR=2.2, (95%CI: 1.84–2.48). Among state level variables, adolescents belonging to state with
lower education level of 10th standard and above had 20% AOR=1.2, (95%CI: 1.09–1.42) more chance to
use alcohol. Further, adolescents residing in states having higher prevalence of alcohol users had two-fold
higher chance AOR=2.1, (95%CI: 1.85–2.40) to use alcohol.

Table 2(a): Adjusted association of alcohol use among adolescents with individual level study variables

Characteristic
Logistic Regression Adjusted

Odds Ratio (95%C.I.)

Multilevel Logistic

Regression Adjusted

Odds Ratio (95%C.I.)

Age (years) 1.2 (1.16,1.26) 1.2 (1.16,1.27)

Sex

Female 1 1

Male 5.7 (4.91,6.73) 6.6 (5.58,7.78)
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Caste & Religion

Hindu(non SC/ST) 1 1

Hindu(SC/ST) 1.4 (1.23,1.63) 1.4 (1.24,1.67)

Muslim 0.3 (0.24,0.39) 0.28 (0.21,0.36)

Others religions 1.9 (1.68,2.26) 2.1 (1.72,2.55)

Education

Secondary&above 1 1

Illiterate/Primary 1.4 (1.18,1.55) 1.3 (1.09,1.45)

Employment

Unemployed 1 1

Employed 1.4 (1.27,1.64) 1.4 (1.25,1.62)

Tobacco use

No 1 1

Yes 8.2 (7.24,9.27) 10.4 (9.09,11.9)

Marital status

Unmarried/Single 1 1

Married 1.4 (1.15,1.77) 1.4 (1.13,1.77)

The results under multilevel model accounting hierarchical structure of data (Table 2(a)) revealed that
there was variation in alcohol use among the states and proportion of the estimated variance in alcohol use
among adolescents between states was 13% (ICC=13%, 95% CI: 7.0%-21.0%). In terms of Median odds
ratio (MOR), if adolescents move to another state with a higher probability of adolescents’ alcohol use,
the median increase in their odds of alcohol use would be almost two-fold (MOR=1.9, 95% CI: 1.64-2.39).
As evident from the table 2(a), nearly all the significantly associated factors under conventional logistic
regression analysis remained significant under multilevel analysis. However, their confidence intervals be-
came wider in multilevel model. It may be attributed to the fact that conventional logistic regression does
not account the state heterogeneity. Secondly, in case of multilevel logistic regression, odds of alcohol use
by adolescents having education below secondary (OR=1.2, 95% CI: 1.09–1.44) is interpreted as if we
compare two adolescents with identical level of associated factors, one with below secondary education
and one with secondary and above, limited to the same state, then the chance of alcohol use increased
by 1.2 times for the adolescents having below secondary education. In case of state level variables (table
2(b)), this interpretation is limited to state having same level of alcohol use. The odds of alcohol use
for adolescents of state with lower literacy (< 30.8%), and other from its counterpart and those states
possibly differ in alcohol use risks, the odds ratio for the comparison will lie between 0.31 to 3.69 with
80% probability. In case of state level adult alcohol use prevalence (> 12.5%), IOR-80% was (0.62,
7.40). Since IOR-80 for state level variables were wider and contain 1, it indicates incapability of state
level factors to add meaningful justification of variation in prevalence of alcohol use among adolescents in
the states.

Table 2(b): Adjusted association of alcohol use among adolescents with household level & states level factors and
measures of state level variation
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Characteristic
Logistic Regression

Adjusted

Odds Ratio (95%C.I.)

Multilevel Logistic

Regression Adjusted

Odds Ratio (95%C.I.)

Household alcohol use

No 1 1

Yes 2.2 (1.84, 2.48) 1.9 (1.75,2.22)

Literacy rate

(10th standard and above)

≥30.8% 1 1

< 30.8% 1.2 (1.09, 1.42) 1.1 (0.62, 1.82)

IOR-80 [0.31, 3.69]

Prevalence of alcohol use

≤12.5% 1 1

> 12.5% 2.1 (1.85, 2.40) 2.1 (1.25, 3.65)

IOR-80 [0.62, 7.40]

Measures of state level variation

State level Variance

(95% C.I.) Full Model
0.47 (0.27, 0.84)

ICC(State level)

(95% C.I.) Full model
0.13 (0.07, 0.21)

Median Odds Ratio

(95% C.I.) Full Model
1.9 (1.64, 2.39)

The assessment of discriminating ability of two modelling approaches (table 3) shows that Area under
Receiving Operative Curve analysis (AROC) was more under multilevel model (AROC= 92.7 95%CI:
92.21-93.24) as compared to conventional logistic model (AROC=91.5, 95%CI: 90.41-91.73). Also, the
multilevel model had largest log likelihood and the smallest AIC and BIC, as compared to conventional
logistic regression, which suggests a best goodness of fit in case of multilevel model.

Table 3: Comparison of models for alcohol use among adolescents in India
Conventional Logistic Regression Multilevel Logistic Regression

Log likelihood -4479.3 -4290.7

AIC 8984.7 8609.4

BIC 9094.3 8727.5

Area under ROC 91.5 (90.41, 91.73) 92.7 (92.21, 93.24)

4 Discussion
A harmful alcohol use among adolescents has various bad impacts not only on their future life, but also on
society in general. The present study explored the factors associated with adolescents’ inclination towards
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alcohol use along with comparative appraisal of the developed conventional multivariable logistic regression
model and multilevel multivariable logistic regression model in terms of their predicting ability. Each of the
two multivariable analyses revealed that similar factors are associated with alcohol use among adolescents.
Among them, one of the important factors which increase the chance of alcohol use was house-hold level
alcohol use. This is consistent with earlier studies [14-18]. It also implies the role of drinking parents
which influences the children’s attitude and personal beliefs towards alcohol use after they get exposed to
drinking by family members [14] and also indicates the social learning about initiation of alcohol use. As
a further endorsement, adolescents belonging to states where prevalence of alcohol use was higher were
more likely to use alcohol. The findings under this study suggest that it is highly required to educate
parents and society about ill effect of alcohol use and strong message should be communicated to them
that those children are more likely to use alcohol whose family members use alcohol. It also suggests that
community interventions may be required that include supportive environment, strong policy support and
community participation. The male and older adolescents were more likely to use alcohol and this finding
was also observed in other studies [15,19]. Interestingly, in contrary to univariable analysis, marital status
of the adolescents turned to be a risk factor in multivariable regression analysis. This may be attributed
to the fact that nearly 65% of adolescents were women and among them 20% were married, where as
among males (35%) only 2 % percent were married. The present study also has shown that literacy plays
an important role in protecting adolescents from using alcohol. The adolescents having lower literacy
and belonging to state where literacy was low were more likely to use alcohol than their counter parts
[15, 20]. The reason behind this may be that due to higher education, individuals and community are
likely to have better understanding about bad impact of alcohol use on self as well as at community level.
Tobacco use was a major correlate of alcohol use in our study. Joint use of tobacco and alcohol has been
reported in India [21] and other parts of the world [17]. Earlier studies on adolescents in India have not
considered caste and religion [23,24]. In present study, alcohol use was more prominent among Hindus
(S.C./S.T.) and other religions as compared to Hindus (Non S.C/S.T.). On the other hand, Muslims
were less likely to use alcohol. This finding is analogous with other studies [19, 22,25]. Further, studies
on general population have shown same trend [26]. The prevailing low literacy among adolescents with
lower socioeconomic status may be major reasons behind it. In terms of discriminating ability and other
performance indicators, multilevel model emerged to be better as compared to conventional logistic model.
It emerged to be better in terms of lower AIC and BIC. As obvious, confidence intervals of the estimated
parameters were slightly wider under multilevel regression models than conventional logistic regression
[27]. This may be attributed to the fact that conventional logistic regression does not take into account
the state level heterogeneity [27]. Further, observed IOR- 80% implies that considered state level variables
did not add much in the variation in alcohol use by adolescents among the states. In addition, median
odds ratio also implies that in spite of considered covariates in the models, a substantial between state
variability still exists. As such, more relevant state level variables may be required to explain the states’
heterogeneity regarding alcohol use more closely.

5 Conclusion
This study has dealt with the application, interpretation and comparison of conventional and multilevel
logistic regression models regarding determinants of alcohol use among the adolescents. To the best of
our knowledge, this study is the first study on such a large national level data to examine the associated
factors of alcohol use among adolescents more scientifically. In our study, multilevel model outperformed
conventional model due to obvious presence of clustering in our data. This study has shown that education
level of adolescents and their residing community, and prevailing alcohol use in their family and community
were main predictors of alcohol use among adolescents. Keeping in view of the associated factors, the
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preventive activity to curb alcohol use among them can be carried out by encouraging them regarding
higher education and also changing the social norm of alcohol use among the parents and society at home
as well as at public places. To generate effective public health program, since data used in this study was
not collected solely for the alcohol use, further research is needed to explore the vulnerability of certain
more relevant variables associated with alcohol use.
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