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Gujarat Journal of Statistics and Data Science 
(Formerly Gujarat Statistical Review) 

Editor in Chief: message 

The special volume of Gujarat Journal of Statistics and Data Science is being published as a memorial 
volume for Late Professor C. G. Khatri, Retired Professor and Head, Department of Statistics, Gujarat 
University, Gujarat, India. Dr. Khatri was one of the stalwart experts in the field of Multivariate analysis, 
eminent researcher in Matrix Algebra, specialised in generalized inverse of matrices. He had jointly 
published several research papers on generalized inverse of matrices and Multivariate distributions in 
various national and international journals, co - author with the legendary figures in the world of Statistics 
like Professor C. R. Rao and Late Professor S. K. Mitra. He was frequent visitor at Indian Statistical 
Institute, Kolkata, Delhi and at several universities in Canada and USA. 

My memory goes back to 1984 when for the first time I met Professor C. G. Khatri at the Vice- Chancellor’s 
office, South Gujarat University, Surat, while I was facing him for an interview for the post of Associate 
Professor. He asked a few questions on variance balanced design as he had published one paper on variance 
balanced design in 1982 and my Ph.D. thesis was containing one chapter on VB design. The next meeting 
with him was at the Department of Statistics, Gujarat University, where he was conducting twenty-one days 
course on Linear Models, funded by UGC, New Delhi. Twenty-one days of academic learning under his 
brilliant guidance made me a good research worker in Linear Models and Design of Experiments. He was 
pioneer in organising the annual conference of Gujarat Statistical Association annually at various 
colleges/universities in Gujarat and we used to meet him.  

It gives me utmost heartiest pleasure in being associated with the noble task of publishing a journal as a 
memorial volume for a person who had earned name and fame as a Statistician in India and in the world. 
Since the new name of the journal is Gujarat Journal of Statistics and Data Science, hence we included the 
first paper on Data science authored by Professor B.L.S. Prakasa Rao. I was entrusted with the responsibility 
of Editor in Chief of Gujarat Journal of Statistics and Data Science and to edit this volume in the meeting 
of the Gujarat Statistical Association held on August 2021. I am grateful to the committee members of the 
Gujarat Statistical Association for having confidence and faith on me to handle and complete this mighty 
task. Moreover, with the full support from all office bearers of GSA and in particular the President, Dr N 
D Shah, we could restart the publication of this prestigious journal. I am really happy in bringing up the 
journal in time with research papers of the National and International reputed authors.  Professor Bikas 
Kumar Sinha, Managing Editor and Professor Ashis SenGupta, Editor of this journal are extremely helpful 
at every stage with extreme courtesy for having the publication of this volume from beginning to end. We 
used to discuss various queries and problems with regard to this volume either by email or by mobile. I was 
able to solve the problems with their advices and suggestions. It has been a wonderful and truly rewarding 
experience to work with them. I am also extremely grateful to Professor B.L.S. Prakasa Rao, former 
Director and Emeritus Scientist of I S I Kolkata who suggested the new name of this journal as Gujarat 
Journal of Statistics and Data Science. One more person Dr. Parag Shah deserves special mention because 



he has followed thru with all the editorial works and looked at stage by stage progress with extreme interest. 
He has been quite helpful in compiling the papers with manuscripts number and then making 
correspondence with authors, Editor, Managing Editor and Editor - in - Chief from time to time. 

All the contributory authors and referees were seriously involved in their respective academic activities for 
which we have passed thru a lengthy editorial process over the last several months. I am extremely thankful 
to them for their academic and scientific interest in completing this task. 

With these few words, I place the special volume of Gujarat Journal of Statistics and Data Science before 
our readers at large. We fondly hope they will not be disappointed with this volume.      

Dilip Kumar Ghosh 

Editor in Chief 

Preface 
My recollection of meeting Late Professor Chinubhai Ghelabhai Khatri [CGKhatri] goes back to 1970 
during 57th Indian Science Congress at IIT, Kharagpur. As research scholars at CUDS, we [twin brothers] 
attended the same. Among others, Professors C R Rao and C G Khatri were both prominently visible in all 
sessions. After almost every presentation of young budding scholars, CGK would throw Qs like a roaring 
tiger but CRR was remarkably cool and would make observations in his characteristic smiling style. That 
was CGK – all along very much vocal and loud. 

Over time … like many other seniors in our profession, Khatri became our Dear Chinu-da.  We met him 
many times within India and abroad mainly at conferences. I used to meet him at ISI, Kolkata as well. He 
had a special liking for Sinha Brothers.        

When DKG approached me, I did not give any second thought. I am delighted to have this opportunity to 
serve this Journal as its Managing Editor. With DKG as Chief Editor and ASG as the Editor and with a 
strong group of Advisory Board Members and Editorial Board Members, I am confident this revival of the 
journal will reflect on the passion of Late Prof. Khatri for the subject in terms of Teaching and Research in 
his favourite topics.  

This first issue of GJSDS has been carefully crafted to reflect on the topics most liked by CGK. We fondly 
hope it will attract attention and satisfaction of our readers at large. 

Bikas K Sinha 

Kolkata 

July 12, 2022  

  



Forewords 

It was the Summer (June) of 1979, I was a Ph.D. student and it was my very first presentation of a research 
paper in an international conference, Symposium on Variance Components, g-inverses and Applications, 
organized by Prof. C.R. Rao at The Ohio State University, Columbus, USA. Hardly had I completed, when 
someone from the front voiced very strongly that the original result, I had generalized was in fact 
established by him and not by CR Rao as I had stated. I politely answered that I had seen Prof. Rao’s work 
and was ignorant about his result. Prof. C.R. Rao had his characteristic soft smile! Later I was told that the 
person was no other than Prof. C.G. Khatri! His passion with the research paper had left a lasting impression 
on me. Later in my research and teaching, I have used the classic book, An Introduction to Multivariate 
Statistics, by M. S. Srivastava, C. G. Khatri, North-Holland/New York, 1979, and I obviously came to 
greatly appreciate the profound impact Prof. Khatri has made in multivariate statistical inference and matrix 
theory. It was thus with reverence and pleasure that I accepted to be the Editor of this revival of Gujarat 
Statistical Review of which Prof. Khatri was the Founder-Editor. This new version will certainly progress 
in the footsteps of the earlier one as per the aims of Prof. Khatri. Moreover, we will also strive to fulfil our 
vision to enrich this journey with the emerging faces in theory and methodology, as well as with the 
challenges in real-data problems, which are surfacing in the arena of statistical science. With this opening 
issue, I invite senior and young researchers alike to submit their scholarly papers to our journal to take it to 
greater heights. 

Ashis SenGupta 

Editor   
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Abstract

We give an overview of what is considered to be �Data Science� as opposed to the traditional �Statistics�

program and explain some ideas concerning �Big Data� . Our overview is based on an excellent review article

entitled �50 Years in Data Science� by David Donoho [4](Journal of Computational and Graphical Statistics,

Vol. 26 (2017), 745-766) and some other recent articles on the web.

1 What is Data Science?

In a review of a book on Data Science, one reviewer commented �When trying to de�ne Data Science,

the ancient Buddhist parable of the blind men and the elephant springs to mind. The entrepreneur,

the academic researcher and the university administrator approach the beast in turn and examine it

but report something di�erent. The entrepreneur sees the training of a generation of data workers

to deal with large data sets as a business opportunity. The university administrator hears the siren's

call of new programs and students, while the academic researcher is still trying to �gure out where

the science is. An exact de�nition of Data Science remains elusive� (cf. [11]).

The subject of Statistics is undergoing a change. Several Departments of Statistics are trying

to rename their Department as the �Department of Data Science� and awarding degrees in Data

Science programs. It is now what can be termed as � Data Science Moment� .

The question is whether Data Science is really di�erent from Statistics. According to the Data

Science Association (DSA) of USA �Data Science means the scienti�c study of creation, validation

and transformation of data to create meaning. A �Data Scientist� is a professional who uses scienti�c

methods to liberate and create meaning from raw data - somebody who can play with data, spot trends

and learn truths few others know� .

According to American Statistical Association (ASA) �While there is not yet a consensus on

what precisely constitutes Data Science, three professional communities are emerging as foundational

to Data Science: (i) Database Management to enable the transformation, conglomeration and

organization of data resources; (ii) Statistics and Machine Learning to convert data into knowledge;

(iii) Distributed and Parallel systems to provide the computational infrastructure to carry out data

analysis. Statistics and Machine Learning play a central role in Data Science� .

Data Science is experiencing rapid and unplanned growth spurred by the proliferation of complex

and rich data in science industry and government. Some remark that the Data Science is the science

for acquisition, management, analysis and inference from data (cf. PCMI Undergraduate faculty

group (2018)[6]).

Data Science is in the intersection of Statistics, Computer Science and substantive application

domains of these subjects. From Computer science comes Machine Learning and high performance

© 2022 Author(s). (https://www.thegsa.in/).
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computing technologies for dealing with scale. From the subject of Statistics comes the tradition of

exploratory data analysis, testing and visualization (cf. [10]).

New technology makes it possible to capture, annotate and store vast amounts of social media,

logging and sensor data. Computing advances make it possible to analyze data in novel ways and at

ever increasing scales (cf. [10]).

Data Science can be considered as a superset of the �elds of statistics, machine learning and now

AI (Arti�cial Intelligence) which adds some technology for scaling up to �Big Data� . The idea is to

�learn from data� . Data Science has become a fourth approach to scienti�c discovery in addition to

experimentation, modeling and computation. Data Science leading to scienti�c discovery and practice

involves the collection, management, processing, analysis, visualization and interpretation of vasts

amounts of heterogeneous data associated with a diverse scienti�c and interdisciplinary applications.

Data Scientist is a professional who uses scienti�c methods to discover and create meaning from raw

data.

Statistics also means the practice of science of collecting and analyzing numerical data in samples

large as well as small. To a statistician, this de�nition of statistics seems already to encompass any

thing that the de�nition of data scientist might think. However a lot of statistical work deals with

inferences to be made from small samples as well as large samples.

The question is �Is Data Science just a �re-branding� of Statistics?� �Why do we need Data

Science when we had Statistics for the last 100 years?� When physicists do mathematics, they do

not say that they are doing number science. They are doing mathematics. If you are analyzing data,

you are doing Statistics no matter by whatever name you call it. You can call it Data Science or

Informatics or Big Data Analytics but it is still Statistics!!

Is Data Science a Science? There is a considerable debate about what the science of Data Science

is. Data Science is inherently interdisciplinary. Working with data requires the mastery of a variety

of skills and concepts including many traditionally associated with the �elds of Statistics, Computer

Science and Mathematics. The cycle of obtaining, cleaning and processing data, exploring data,

de�ning questions, performing analysis and communicating the results lie at the core of Data Science

experience (cf. PCMI Under graduate faculty group (2018)[6]).

�Data Scientist� means a professional who uses scienti�c methods to analyze and create meaning

from raw data. He or she should have a solid foundation in machine learning, algorithms, modeling ,

statistics, mathematics and strong business acumen coupled with the ability to communicate �ndings

to business leaders in a way that can in�uence how an organization approaches a business challenge.

Data Scientists employ models to understand the world and the subjects of mathematics and

statistics provide the language for these models. A working data scientist requires a �rm foundation

in mathematics, statistics and computer science. A student of data science should have competencies

in computational and statistical thinking, mathematical foundations, model building and assessment,

algorithmic and software foundation, data cleaning and knowledge transfer and communication (cf.

PCMI Under graduate faculty group (2018)[6]).

Data Scientist is a person who is better at statistics than any software engineer and better at

software engineering than any statistician!!

2 Data Science and Big Data

Some people think that �Big Data� is di�erent from Statistics but is a part of Data Science. This is not

correct. Statisticians have been working with large data sets for several decades. As a mathematical

statistician, I have been working in asymptotics dealing with large samples for decades. The concepts

of sampling and su�ciency deal with large samples e�ectively and they were formulated by statisticians
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dealing with large data sets.

Computer scientists seem to think that Data Science is concerned with really big data which

traditional computing packages and other resources could not accommodate and data science trainees

need additional skills to analyze big data sets.

More than 60 years ago, John Tukey [12], Professor of Statistics, Princeton university called for a

reformulation of academic statistics, that is, statistics we teach for our undergraduate and master's

students. His paper on �The Future of Data Analysis� was published in The Annals of Mathematical

Statistics, Vol. 33 (1962) 1-67. He pointed out to the existence of an as yet unrecognized science

whose subject of interest was �Data Analysis� . Data science involves the coupling of scienti�c

discovery and practice which in turn consists of the collection, management, processing, analysis,

visualization and interpretation of vasts amounts of heterogeneous data associated with a diverse

array of scienti�c and inter-disciplinary applications.

Large data sets are encountered, for example, in meteorology, genomics, biological and

environmental research. They are also present in other areas such as internet search, �nance and

business informatics. Data sets are big as they are gathered using sensor technologies. There are

also examples of Big Data in areas which we can call Big Science and in Science for research. These

include �Large Hadron Collision Experiment� which represent about 150 million sensors delivering

data at 40 million times per second. There are nearly 600 million collisions per second. After �ltering

and not recording 99.999%, there are 100 collisions of interest per second.The Large Hadron Collider

experiment generates more than a peta byte (1000 trillion bytes) of data per year. Astronomical data

collected by Sloan Digital Sky Survey (SDSS) is an example of Big Data. Decoding human genome

which took ten years to process earlier can now be done in a week or even in a few hours. This is also

an example of a Big Data. Human genome data base is an example of a Big Data. A single human

genome contains more than 3 billion base pairs. The 1000 Genomes project has 200 terabytes (200

trillion bytes) of data. Human brain data is an example of a Big Data. A single human brain scan

consists of data on more than 200,000 voxel locations which could be measured repeatedly at 300

time points.

For Government, Big Data is present for climate simulation and analysis and for national security

areas. For private sector companies, Big Data comes up from millions of back-end operations every

day involving queries from customer transactions, from vendors etc. Big Data sizes are a constantly

moving target. It involves increasing volume (amount of data), velocity (speed of data in and out)

and variety (range of data types and sources). Big Data are high in volume, high in velocity and/or

high in variety information assets. It requires new forms of processing to enable enhanced decision

making, insight discovery and process optimization (cf. Prakasa Rao [7][8]).

During the last twenty years, several companies abroad are adopting to data-driven approach to

conduct more targeted services to reduce risks and to improve performance. They are implementing

specialized data analytics to collect, store, manage and analyze large data sets. For example, available

�nancial data sources include stock prices, currency and derivative trades, transaction records, high-

frequency trades, unstructured news and texts, consumer con�dence and business sentiments from

social media and internet among others. Analyzing these massive data sets help measuring �rms risks

as well as systemic risks. Analysis of such data requires people who are familiar with sophisticated

statistical techniques such as portfolio management, stock regulation, proprietary trading, �nancial

consulting and risk management.

Big Data are of various types and sizes. Massive amounts of data are hidden in social net works

such as Google, Facebook, Linkedin, YouTube and Twitter. These data reveal numerous individual

characteristics and have been exploited. O�cial statistics from the government is a Big Data (cf.[9]).
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3 Exploratory Data Analysis

In his 1962 paper, John Tukey identi�ed four driving forces behind �Data Science� which he called

�Data Analysis� : (i) Formal theories of statistics; (ii) Developments in computer architecture and

associated software; (iii) Large data sets; (iv) Quanti�cation in di�erent disciplines. Cleveland

[3] wrote an article entitled �Data Science: An action plan for expanding the technical areas of

the �eld of Statistics� . He proposed six focused points of activity for teaching data science: (i)

Multidisciplinary investigations; (ii) Models and methods of data; (iii) Computing with Data; (iv)

Teaching of techniques; (v) Evaluation of computer packages;(vi) Theory of statistics.

Over the last 50 years, many statisticians and data analysts developed computational environment

for data analysis such as BMDP, SPSS, SAS and MINITAB and more recently packages such as

R in the personal computer era. The programing language R is today the dominant quantitative

programming environment.

Breiman [2] said �Statistics� starts with data. Think of the data as being generated by a black

box in which a vector of input variables x (independent variables) go in one side and on the other side

the response variables y come out. Inside the black box, nature functions to associate the predictor

variable with the response variable. There are two goals to analyzing the data: (1) Prediction: To be

able to predict what the responses are going to be to future input variables; (2) Inference: To infer

how nature is associating the response variables to the input variables.

Let us see what is taught in today's Data Science programs at some of the best universities with

statistics programs. (1) Research design and applications for Data and Analysis; (2) Exploring and

analyzing Data; (3) Storing and Retrieving Data; (4) Applied Machine Learning; (5) Data Visualization

and Communication.

Most of the departments of statistics do not teach about �Storing and Retrieving Data� . Machine

learning is a rapidly growing �eld at the intersection of computer science and statistics concerned

with �nding patterns in data. It is responsible for advances in technology from personalized product

recommendations to speech recognition in cell phones. Understanding of probability, statistics and

linear algebra is important for �Applied Machine Learning� course. Students have to be taught tools

such as �R� and �Python� for handling large data sets. Data Science course must involve a data

analysis project with a large data set.

Master's program in Data Science should be a mixture of some material out of a Statistics master's

program to learn techniques to analyze large data bases and some material from Computer Science

master's program with inputs from statistics and machine learning.

The activities of Data Science can be classi�ed into six parts: (1) Data gathering, Preparation

and Exploration; (2) Data representation and transformation; (3) Computing with Data; (4) Data

Modeling; (5) Data Visualization and Presentation; (6) Science about Data science.

Data gathering, Preparation and Exploration

Most of the e�ort devoted to Data Science is spent by diving into messy data to learn the basics

of what is in them so that the data can be made ready for exploration. Data gathering includes

traditional experimental design, survey sampling and other techniques as practiced by statisticians but

also a variety of modern data gathering techniques from data resources such as Google and Wikipedia.

Many data sets contain anomalies, mistakes and misprints. Any data driven project requires identifying

such issues. The data might need grouping, smoothing and sub-setting. This process is some times

called as �data cleaning� . Tukey had coined the term �Exploratory Data Analysis� . Every data

scientist should devote time and e�ort to explore data to check its basic properties and to expose

its unexpected features. This work adds crucial insights to every data driven project. Mahalanobis
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discussed this issue and termed this process as �scrutiny of data� .

Data representation and transformation

A data scientist works with many di�erent data sources. They will be in a wide range of formats and

the data scientist should be able to handle them. Hardware and software constraints are a part of

them. Data Scientists may �nd a transformation restructuring the original data into a new and more

revealing form.

Data Processing

Every data scientist should know and use several languages for data analysis and data processing.

These include R and Python and also speci�c languages for transforming and manipulating text and

for managing complex computational aspects. Cluster and cloud computing and the ability to run

massive numbers of jobs on such clusters is important aspect of modern computational scenario. Data

scientists should be able to develop work �ows which organize work to be split up over many jobs

which can be run sequentially or across many machines in parallel.

Computing with data

R language transformed the practice of data analysis by creating a standard language which di�erent

analysts can all use to communicate and share algorithms and work �ows. R language is used in many

online presentations about data science initiatives.

Tidy data: Eighty percent of data analysis is spent on the process of cleaning and preparation

of data. Wickham [13] developed a systematic way of thinking about �messy data formats that are

commonly encountered in data analysis and shows how to transform each such format into a tidy

format. He introduced a set of tools in R to transform the data into a universal �tidy� data format.

Data Modeling

(1) Generative modeling: Here one proposes a stochastic model that could have generated the data

and derives methods to infer properties of the underlying generative mechanism. (2) Predictive

modeling: Here one constructs methods which predict well over a given speci�c data set in line with

machine learning ideas.

Data Visualization and Presentation

Data visualization starts with standard histograms, scatter plots and time series plots but in recent

times, it can take more elaborate shapes. Data scientists decorate simple plots with additional colour

or symbols to bring in important new factors. They create dashboards for monitoring data processing

pipelines that access streaming or widely distributed data.

Science about Data Science

Data scientists are doing science about Data science which they identify commonly occurring analysis

or process work �ows.

Remark 1. Each proposed notion of data science involves some enlargement of Statistics we teach

and Machine Learning. Data Science is the science of learning from data. It studies the methods

involved in the analysis and processing of data and proposes technology to improve methods in evidence

based manner. Harvard University has started a journal recently named �The Harvard Data Science

Review� . According to the Editor-in-Chief of the journal, the mission of the �Harvard Data Science

Review� is to really help to de�ne and shape what Data Science is exactly.
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1 Introduction to univariate discrete Laplace models

Inusah and Kozubowski [4] de�ne the univariate asymmetric discrete Laplace distribution to be one

with characteristic function of the form:

�X(t) = p1p2(1� (1� p1)e
it)�1(1� (1� p2)e

�it)�1; (1)

where p1; p2 2 (0; 1):

An alternative description of the model is available and will be used. For it we begin with two

independent geometric random variables, V1 and V2 with Vi � geo(pi), i = 1; 2: We then de�ne

X = V1 � V2: (2)

If X has a representation of this form, we write X � ADL(p1; p2): Note that in this paper, geometric

random variables are de�ned to have support f0; 1; 2; :::g; and can be thought of as representing the

number of failures preceding the �rst success in series of Bernoulli trials.

The possible values of X are f:::;�3:� 2:� 1; 0; 1; 2; 3; ::::g.

For x � 0 we have

P (X = x) =

1∑

v2=0

P (V1 = x + v2; V2 = v2)

=

1∑

v2=0

p1q
x+v2
1 p2q

v2
2

= p1p2q
x
1(1� q1q2)

�1

© 2022 Author(s). (https://www.thegsa.in/).
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Analogously, for x < 0,

P (X = x) =

1∑

v1=0

P (V1 = v1; V2 = v1 � x)

=

1∑

v2=0

p1q
v1
1 p2q

v1�x
2

= p1p2q
�x
2 (1� q1q2)

�1:

It is then not di�cult to con�rm that
∑1

�1 P (X = x) = 1

This distribution will be called the asymmetric discrete Laplace distribution (ADL). It is a discrete

parallel to the asymmetric Laplace model Y = U1 � U2 where the Ui 's are independent with

Ui � exp(�i); i = 1; 2:

A mixture alternative is suggested by consideration of available mixture representations of

continuous asymmetric Laplace models. It includes an additional parameter for �exibility. See [5], [7],

and [6] for relevant discussion on analogous asymmetric Laplace models. We thus will consider

Y = IV1 + (1� I)(�V2); (3)

where Vi � geo(pi); i = 1; 2; and I is an independent Bernoulli random variable with P (I = 1) = �:

It is readily veri�ed that the characteristic function of such a generalized asymmetric discrete

Laplace (GADL) variable of the form (3) is given by

�Y (t) =
1� �(1� p1)e

it � (1� �)(1� p2)e
�it

1� (1� p1)e it � (1� p2)e�it + (1� p1)(1� p2)
: (4)

The density of this GADL distribution is of the following form.

P (Y = y) = �p1q
y
1 ; y = 1; 2; :::;

= �p1 + (1� �)p2; y = 0; (5)

= (1� �)p2q
�y
2 ; = �1;�2;�3; :::;

where p1; p2 and � are parameters ranging over the interval (0; 1):

From the characteristic function, or from the mixture representation (3) we �nd

E(Y ) =
�(1� p1)

p1
�

(1� �)(1� p2)

p2

and

var(Y ) =

{
�(1� p1)(2� p1)

p21
+

(1� �)(1� p2)(2� p2)

p22

}
�

{
�(1� p1)

p1
�

(1� �)(1� p2)

p2

}2

:

In the case in which X � ADL(p1; p2) the moments simplify to become

E(X) = (1� p1)=p1 � (1� p2)=p2

and

var(X) = (1� p1)=p
2
1 + (1� p2)=p

2
2:
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2 Estimation for the ADL distribution

Maximum likelihood

Suppose we have a sample X1; X2; :::; Xn from an asymmetric discrete Laplace distribution de�ned in

(2). We wish to estimate the parameters using maximum likelihood.

De�ne

U =

n∑

1

Xi I(Xi � 0) and V = �

n∑

1

Xi I(Xi < 0):

Taking partial derivatives of the log-likelihood and equating to 0, yields the following likelihood

equations

n

p1
=

n(1� p2)

p1 + p2 � p1p2
+

U

1� p1
; (6)

n

p2
=

n(1� p1)

p1 + p2 � p1p2
+

V

1� p2
: (7)

In order to solve these equations it is convenient to rewrite them in terms of the means of the

Vi 's, thus we de�ne �i = (1� pi)=pi ; i = 1; 2: The likelihood equations then become

�1 =
�1�2

1 + �1 + �2

+
U

n
; (8)

�2 =
�1�2

1 + �1 + �2

+
V

n
: (9)

From these equations we deduce that

�1 � �2 =
U

n
�
V

n
: (10)

Next, using (10), express �2 as a linear function of �1 and substitute this in equation (8). This upon

rearranging is a quadratic equation in �1 which can be solved to yield the maximum likelihood estimate

of �1, i.e.,

�̂1 =
U

n
�

1

2
+

√
1

4
+
UV

n2
; (11)

and then

�̂2 = �̂1 �
U

n
+

V

n:
: (12)

Method of moments

Suppose we have a sample X1; X2; :::; Xn from an asymmetric discrete Laplace distribution represented

in the form

X = V1 � V2;

where the Vi 's are i.i.d. with Vi � geo(pi); i = 1; 2:

We will equate the �rst two moments of X to the corresponding sample moments. Elementary

computations yield

E(X) =
1� p1
p1

�
1� p2
p2

9



Discrete Laplace Distributions Arnold and Arvanitis

and

E(X2) =
1� p1
p21

+
1� p2
p22

+ (E(X))2

Denote the �rst two sample moments, based on a sample of size n, by M1 = (1=n)
∑n

i=1Xi and

M2 = (1=n)
∑n

i=1X
2
i ; and de�ne S2 = M2 � M2

1 and set up the equations M1 = E(X) and

S2 = var(X) which may be solved to obtain method of moments estimates of the pi 's. Here,

as in the maximum likelihood case, it is convenient to rewrite the equations in terms of the means of

the Vi 's (i.e., �i = (1� pi)=pi ; i = 1; 2): The moment equations are of the form

M1 = �1 � �2; (13)

S2 = �1(1 + �1) + �2(1 + �2): (14)

From equation (13) we can write �2 = �1 � M1 and substitute this into (16). This then can be

rearranged into a quadratic function of �1 which is readily solved. In this way we obtain method of

moments estimates of the following form.

�̃1 =
1

2

[
M1 � 1 +

√
1�M2

1 + 2M1S2

]
; (15)

and

�̃2 = �̃1 �M1: (16)

Bayesian Method

Suppose we have a sample X1; X2; :::; Xn from an asymmetric discrete Laplace distribution with density

fX(x ; p1; p2) =

(
p1p2

p1 + p2 � p1p2

)
(1� p1)

xI(x�0)(1� p2)
�xI(x<0)

De�ne

U =
∑n

1Xi I(Xi > 0), V = �
∑n

1Xi I(Xi < 0) and W =
∑n

1 I(Xi > 0)

We wish to estimate the parameters from a Bayesian viewpoint.

The likelihood for the sample is given by

L(p1; p2) =

(
p1p2

p1 + p2 � p1p2

)n

(1� p1)
u(1� p2)

v :

If we take independent beta priors for p1 and p2, i.e.,

p̃i � Beta(�i ; �i); i = 1; 2;

then the posterior will be of the form

f (p1; p2jX = x) /

(
pn+�1

1 pn+�2

2

(p1 + p2 � p1p2)n

)
(1� p1)

u+�1(1� p2)
v+�2:

From this joint posterior density the usual Bayes estimates of p1 and p2, namely E(pi jX = x); i = 1; 2;

will be obtained by numerical integration.

10
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3 Estimation for the GADL distribution

Maximum likelihood

Suppose instead we have a sample X1; X2; :::; Xn from a generalized asymmetric discrete Laplace

distribution of the form

X = IW1 + (1� I)(�W2)

where I � Bernoul l i(�) and the Wi 's are independent with Wi � geo(pi), i = 1; 2:

We wish to estimate the parameters using maximum likelihood. Here too, we will de�ne

U =
∑n

1Xi I(Xi � 0) and V = �
∑n

1Xi I(Xi < 0);

and also de�ne N0 =
∑n

1 I(Xi = 0), N1 =
∑n

1 I(Xi > 0) and N2 =
∑n

1 I(Xi < 0)

Taking partial derivatives of the log-likelihood and equating to 0, yields the following likelihood

equations

N1

�
=

N2

1� �
�

N0(p1 � p2)

�p1 + (1� �)p2
(17)

N1

p1
=

U

1� p1
�

N0�

�p1 + (1� �)p2
(18)

N2

p2
�

V

1 = p2
�

N0(1� �)

�p1 + (1� �)p2
(19)

Note these equations are particularly easy to solve if N0 = 0. In other cases an iterative solution

may be obtained. Note that if p1 and p2 are known, then equation (17) is equivalent to a quadratic

equation in �. If p1 and � are known, then equation (18) is equivalent to a linear equation in p2.

And, �nally, if p2 and � are known, then equation (19) is equivalent to a linear equation in p1.

Method of moments

Suppose we have a sample X1; X2; :::; Xn from a generalized asymmetric discrete Laplace distribution

of the form

X = IW1 + (1� I)(�W2)

where I � Bernoul l i(�) and the Wi 's are independent with Wi � geo(pi), i = 1; 2:

We wish to estimate the parameters using the method of moments.

The �rst three moments about zero of X are:

E(X) = �
1� p1
p1

� (1� �)
1� p2
p2

E(X2) = �

{
2

(
1� p1
p1

)2

+
1� p1
p1

}
+ (1� �)

{
2

(
1� p2
p2

)2

+
1� p2
p2

}

E(X3) = �

{
6

(
1� p1
p1

)3

+ 6

(
1� p1
p1

)2

+

(
1� p1
p1

)}

�(1� �)

{
6

(
1� p2
p2

)3

+ 6

(
1� p2
p2

)2

+

(
1� p2
p2

)}

11
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If we denote the �rst three sample moments, based on a sample of size n, by M1 = (1=n)
∑n

i=1Xi ,

M2 = (1=n)
∑n

i=1X
2
i ; and M3 = (1=n)

∑n

i=1X
3
i ; and set up the equations Mj = E(X j); j = 1; 2; 3,

then our method of moments estimates will be the solution to these three equations.

Note that, if p1 and p2 are known then the equation M3 = E(X3) is a linear equation in �. Also,

if p2 and � are known, then the equation M2 = E(X2) is equivalent to a quadratic equation in p1,

and �nally, if � and p1 are known then the equation M1 = E(X) is equivalent to a linear equation in

p2. Using these observations, an iterative scheme for identifying the method of moments estimates

is readily set up.

Bayesian Method

Suppose we have a sample X1; X2; :::; Xn from a generalized asymmetric discrete Laplace distribution

of the form

X = IW1 + (1� I)(�W2)

where I � Bernoul l i(�) and the Wi 's are independent with Wi � geo(pi), i = 1; 2:

Recall that we de�ned

U =
∑n

1Xi I(Xi � 0) and V = �
∑n

1Xi I(Xi < 0);

and also de�ned N0 =
∑n

1 I(Xi = 0), N1 =
∑n

1 I(Xi > 0) and N2 =
∑n

1 I(Xi < 0)

We wish to estimate the parameters from a Bayesian viewpoint.

In this case the likelihood will be

L(�; p1; p2) = �n1pn11 (1� p1)
u(1� �)n2pn22 (1� p2)

v [�p1 + (1� �)p2]
n0

A plausible prior with independent marginals will be of the form

�̃ � Beta(�1; �2); and p̃i � Beta(�i ; �i); i = 1; 2:

The corresponding joint posterior density will be

f (�; p1; p2jX = x) / �n1+�1�1pn1+�1�1
1 (1� p1)

u+�1�1(1� �)n2+�2�1pn2+�2�1
2 (1� p2)

v+�2�1

�[�p1 + (1� �)p2]
n0: (20)

If n0 = 0 then the posterior density will have independent beta distributed marginals. If n0 > 0 then

a posterior density that is a mixture of distributions with independent marginals will be encountered.

4 Bivariate models

In [1], two bivariate asymmetric Laplace models are described. The �rst bivariate asymmetric Laplace

model was introduced by [3] and we refer the reader to that source for detailed discussion of the model.

Construction of the model begins with the components used in developing the general bivariate beta

model introduced in [2]. Thus we begin with 8 independent gamma variables U1; U2; :::; U8 with

Uj � �(�j ; 1); j = 1; 2; :::; 8:. We then de�ne (X; Y ) by

X = ��111 (U1 + U5 + U7)� ��112 (U3 + U6 + U8);

(21)

Y = ��121 (U2 + U6 + U7)� ��122 (U4 + U5 + U8);

where it is assumed that the constraints, �1 + �5 + �7 = 1, �3 + �6 + �8 = 1, �2 + �6 + �7 = 1,

and �4 + �5 + �8 = 1, have been imposed to ensure that the distribution has asymmetric Laplace

12
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marginals. This model will be called the bivariate asymmetric Laplace model of the �rst kind and if

(X; Y ) is as de�ned in (21) we will write (X; Y ) � BAL(1)(�11; �12; �21; �22; �). Since there were

four constraints on the �j 's, this is an 8 parameter model. The marginal distributions depend only on

the four � parameters, thus:

X � AL(�11; �12); Y � AL(�21; �22): (22)

The second bivariate asymmetric Laplace model utilizes the closure under minimization property of

the exponential distribution. For it we again begin with 8 independent random variables, V1; V2; :::; V8
but this time we assume that they are exponentially distributed, thus Vj � exp(�j); j = 1; 2; :::; 8:

We then de�ne

X = minfV1; V5; V7g �minfV3; V6; V8g;

(23)

Y = minfV2; V6; V7g �minfV4; V5; V8g:

If (X; Y ) has the structure shown in (23) then we will write (X; Y ) � BAL(II)(�) and say that it has a

bivariate asymmetric Laplace distribution of the second kind with parameter vector �: Note that both

the �rst kind and the second kind bivariate asymmetric Laplace distributions have an 8 dimensional

parameter space. The marginal distributions of the BAL(II) distribution are by construction of the

asymmetric Laplace form. Thus:

X � AL(�1 + �5 + �7; �3 + �6 + �8); (24)

Y � AL(�2 + �6 + �7; �4 + �5 + �8); (25)

Discrete versions of the BAL(I)-(II) distributions will now be constructed using negative binomial

and geometric components instead of gamma and exponential distributed components. But, before

discussing such distributions, we will consider bivariate versions of the generalized asymmetric Laplace

(GAL) distribution. This can be achieved by modifying the BAL(I) or the BAL(II) models by the

introduction of two additional probability parameters.

The generalized version of the BAL(I) model may be de�ned as follows

X = I1�
�1
11 (U1 + U5 + U7)� (1� I1)�

�1
12 (U3 + U6 + U8);

(26)

Y = I2�
�1
21 (U2 + U6 + U7)� (1� I2)�

�1
22 (U4 + U5 + U8);

where it is assumed that the constraints, �1 + �5 + �7 = 1, �3 + �6 + �8 = 1, �2 + �6 + �7 = 1, and

�4+�5+�8 = 1, have been imposed, and where the Ij 's are independent with Ij � Bernoul l i(pj); j =

1; 2:

Means variances and covariance of the coordinates of this random vector are not di�cult to

evaluate, or could be evaluated by simulation.

The generalized version of the BAL(II) model may be de�ned as follows

X = I1[minf(V1; V5; V7g]� (1� I1)[minfV3; V6; V8g];

(27)

Y = I2[minf(V2; V6; V7g]� (1� I2)[minfV4; V5; V8)g];

13
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where the �j 's are positive parameters, and where the Ij 's are independent with Ij �

Bernoul l i(pj); j = 1; 2:

Means variances and covariance of the coordinates of this random vector are also not di�cult to

evaluate, or could be evaluated by simulation.

We now will de�ne analogous discrete versions of these bivariate models. To construct the bivariate

symmetric discrete Laplace model of the �rst kind ( BDL(I) ) we begin with a set of 8 independent

random variables U1; U2; :::; U8 with Ui � neg:bin:(�j ; p); j = 1; 2; :::; 8: Note that all of the Uj 's

share a common value for p. This results in a construction of a bivariate distribution with symmetric

discrete Laplace marginals. It will be seen that it is not possible to use this kind of construction to

yield asymmetric marginals. To continue, we now de�ne (X; Y ) by

X = (U1 + U5 + U7)� (U3 + U6 + U8);

(28)

Y = (U2 + U6 + U7)� (U4 + U5 + U8);

where it is assumed that the constraints, �1 + �5 + �7 = 1, �3 + �6 + �8 = 1, �2 + �6 + �7 = 1,

and �4 + �5 + �8 = 1, have been imposed. This model will be called the bivariate discrete Laplace

model of the �rst kind and if (X; Y ) is as de�ned in (28) we will write (X; Y ) � BDL(1)(�). Since

there were four constraints on the �j 's, this is a 5 parameter model. The marginal distributions are

di�erences of independent geometr ic(p) variables and thus have discrete Laplace densities. Moments

are obtainable from the representation (28).

The second bivariate asymmetric discrete Laplace model that we will consider will utilize the closure

under minimization property of the geometric distribution. For it we again begin with 8 independent

random variables, V1; V2; :::; V8 but this time we assume that they are geometrically distributed, thus

Vj � geo(�j); j = 1; 2; :::; 8; where �j 2 (0; 1); j = 1; 2; :::; 8; We then de�ne

X = minfV1; V5; V7g �minfV3; V6; V8g;

(29)

Y = minfV2; V6; V7g �minfV4; V5; V8g;

using a construction parallel to that used in the construction of the BAL(II) model earlier described in

this paper. If (X; Y ) has the structure shown in (29) then we will write (X; Y ) � BADL(II)(�) and

say that it has a bivariate asymmetric discrete Laplace distribution of the second kind with parameter

vector �: Note that the second kind bivariate asymmetric discrete Laplace distributions has an 8

dimensional parameter space. The marginal distributions of the BADL(II) distribution are of the

asymmetric discrete Laplace form. Thus:

X � ADL(1� (1� �1)(1� �5)(1� �7); 1� (1� �3)(1� �6)(1� �8)); (30)

Y � ADL(1� (1� �2)(1� �6)(1� �7); 1� (1� �4)(1� �5)(1� �8)); (31)

The marginal moments of the BADL(II) distribution are thus readily identi�ed. However cov(X; Y )

is quite complicated and will usually be approximated by simulation. using the de�nition (29).

Generalized versions of these bivariate discrete Laplace models can be formulated in a manner

parallel to that used to generalize the bivariate asymmetric Laplace models.

The generalized version of the BDL(I) model may be de�ned as follows

14
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X = I1(U1 + U5 + U7)� (1� I1)(U3 + U6 + U8);

(32)

Y = I2(U2 + U6 + U7)� (1� I2)(U4 + U5 + U8);

where it is assumed that the constraints, �1 + �5 + �7 = 1, �3 + �6 + �8 = 1, �2 + �6 + �7 = 1, and

�4+�5+�8 = 1, have been imposed, and where the Ij 's are independent with Ij � Bernoul l i(�j); j =

1; 2; and the Uj 's are independent with Uj � neg:bin:(�j ; p); j = 1; 2; 3:::; 8: This model will be called

the generalized bivariate discrete Laplace model of the �rst kind and if (X; Y ) is as de�ned in (32)

we will write (X; Y ) � GBDL(1)(�1; �2; �). Since there were four constraints on the �j 's, this is a 7

parameter model.

Means variances and covariance of the coordinates of this random vector are not di�cult to

evaluate, or could be evaluated by simulation.

The generalized version of the BADL(II) model may be de�ned as follows

X = I1[minf(V1; V5; V7g]� (1� I1)[minfV3; V6; V8g];

(33)

Y = I2[minfV2; V6; V7g]� (1� I2)[minfV4; V5; V8)g];

where the Ij 's are independent with Ij � Bernoul l i(�j); j = 1; 2: and the Vj 's are independent with

Vj � geo(�j); j = 1; 2; :::; 8: This is a 10 parameter model.

Means variances and covariance of the coordinates of this random vector are also not di�cult to

evaluate, or could be evaluated by simulation.

Remark Even more general distribution than (32) can be constructed in which the Ii 's are

dependent indicators.

For this more general model we begin with a random vector (J1; J2; J3; J4) with 4 possible values

(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0) and (0; 0; 0; 1) with associated probabilities �1; �2; �3 and �4, and

then de�ne I1 = maxfJ1; J3g and I2 = maxfJ2; J3g.

The random variables (X; Y ) are then de�ned as in (32) using the dependent Ii 's just de�ned.

The same modi�cation can be made to generalize (33).

Parameter estimation

None of the full models described in this paper are expected to be useful for practical purposes. Instead

the authors expect that they will be used as a source for smaller, more manageable, submodels. For all

four of the bivariate models discussed, only a small collection of speci�c cases may be described which

have explicit discrete densities, and even these densities are rather complex. Therefore, unconventional

methods for parameter estimation may be called for.

For illustrative purposes, we will consider parameter estimation for some submodels with

signi�cantly reduced parameter spaces. In describing submodels we adhere to the following

conventions : (1) If U � neg:bin(�; p) with � = 0 then U = 0 with probability 1. Consequently, such

U's can be deleted from the description of the bivariate models BDL(I) and GBDL(I) as described in

this paper.

(2) If V � geo(�) with � = 0 then V = 1 with probability 1. Consequently such V 's can be

deleted from the description of the bivariate models BADL(II) and GBADL(II) as described in this

paper.

15



Discrete Laplace Distributions Arnold and Arvanitis

Some two-parameter submodels

In this subsection, we will consider parameter estimation for a pair of simple submodels of the BDL(I)

and BADL(II) models.

Example 1. To begin, consider the sub-model of the BDL(I) model given by restricting its parameter

space as follows:

p 2 (0; 1)

�1 = �4 = � 2 (0; 1)

�2 = �3 = 1 (34)

�5 = 1� �

�6 = �7 = �8 = 0:

We will call this model M1. We are adopting the convention that if U � neg:bin:(�; p) with � = 0

then U = 0: The full parameter vector for this two parameter model is thus

(p; �) = (p; (�; 1; 1; �; 1� �; 0; 0; 0)):

Suppose that we have a sample of size n, i.e., f(Xj ; Yj) : j = 1; 2; :::; ng and we wish to estimate

the parameters p and �. Upon writing this model in terms of the Ui variables, thus

X = (U1 + U5)� (U3);

(35)

Y = (U2)� (U4 + U5);

it may be veri�ed that E(X) = E(Y ) = 0, var(X) = var(Y ) = 2(1 � p)=p2 and cov(X; Y ) =

�(1� �)(1� p)=p2. Consequently, if we de�ne

T1 = (1=n)[

n∑

i=1

[(Xi �X)2 + (Yi � Y )2]

and

T2 = (1=n)

n∑

i=1

(Xi �X)(Yi � Y );

we can set up the following moment equations

T1 = E(T1) = 4(1� p)=p2;

(36)

T2 = E(T2) = �(1� �)(1� p)=p2: (37)

These are readily solved to yield the following consistent moment estimates of the parameters of the

model.

p̃ = [1 +
√

1 + T1]=2

and

�̃ = 1 + (4T2=T1):
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Example 2. This time we will consider the two-parameter sub-model of the BADL(II) model given

by restricting its parameter space as follows:

�2 = �3 = � 2 (0; 1)

�1 = �4 = �5 = � 2 (0; 1) (38)

�6 = �7 = �8 = 0:

We will call this model M2. We are adopting the convention that if V � geo(�) with � = 0 then

V =1: The full parameter vector for this two parameter model is thus

� = (�;�; �; �; �; 0; 0; 0);

and the model, in terms of the Vi variables is given by

X = minfV1; V5g � V3;

(39)

Y = V2 �minfV4; V5g:

Elementary computations yield

E(X) = �E(Y ) =
(1� �)2

1� (1� �)2
�

1� �

�

and

var(X) = var(Y ) =
(1� �)2

[1� (1� �)2]2
+

1� �

�2
:

Let us de�ne

T1 = (1=2n)[

n∑

i=1

[Xi � Yi ]

and

T2 = (1=2n)[

n∑

i=1

[(Xi �X)2 + (Yi � Y )2]:

We can then set up the following moment equations to be solved for (�; �).

T1 = E(T1) =
(1� �)2

1� (1� �)2
�

1� �

�
; (40)

(41)

T2 = E(T2) =
(1� �)2

[1� (1� �)2]2
+

1� �

�2
: (42)

These can be solved by iterative substitution. Thus choose an initial value for � , perhaps � = 0:5,

and then with this value of alpha solve for � in equation (40). Then substitute this value of � in

equation (42) and solve for �, then use equation (40) once more, etc.

17
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Multi-parameter submodels

As the two-parameter models discussed in Section 4 would readily suggest, freeing more of the �'s in

BDL(I) or � 's in BADL(II) can lead to more complex models with multiple tail dependencies. Due

to the complexity of the models, more creative computer intensive approaches, will need to be applied

for parameter estimation.

Remark Higher dimensional versions of the BDL(I), BADL(II), GBDL(I), GBADL(II) models are

readily described. Since, for example, the completely general trivariate version of the asymmetric

discrete Laplace model of Type II will involve 26 independent geometric components each with its

own � parameter, only submodels including just a limited number of components will be tractable and

useful for modeling purposes. One very simple trivariate submodel model that might �nd application

is the following.

X = minfV1; V7g � V19

Y = minfV2; v7g � V19

Z = V3 � V19

which involves only 5 of the 26 components in the general model, but still has a non-trivial dependence

structure..

5 Conclusion

In this paper, two discrete Laplace models with new methods of construction are detailed. Standard

parameter estimation techniques are exhibited for both. Further, new bivariate variants of this family

of distributions are discussed, and parameter estimation techniques are outlined. We �nished with a

brief discussion of higher-dimensional models.
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Abstract

A zero-in�ated version of the generalized hyper-Poisson distribution is introduced and study some of its

important statistical properties such as mean, variance, recursion relations for probabilities, raw moments

and factorial moments. The estimation of the parameters of this distribution is considered and the distribution

has been �tted to a well-known data set. Further a generalized likelihood ratio test procedure is applied for

testing the signi�cance of the in�ation parameter.

Keywords: Con�uent hypergeometric series, Count data modeling, Generalized likelihood ratio test, Model

selection, Zero-in�ated Hermite distribution.

1 Introduction

There are many situations in econometric, medical, engineering, manufacturing, public health, road

safety, epidemiology, etc. where zero-in�ation can be observed. To model zero-in�ated count data,

several zero-in�ated models have been studied in the literature, among them zero-in�ated Poisson

distribution (ZIPD) of [6], zero-in�ated Hermite distribution (ZIHD) of [4], zero-in�ated hyper-

Poisson distribution (ZIHPD) of [5] and zero-in�ated modi�ed hyper-Poisson distribution (ZIMHPD)

of [3] are of special interest. The probability mass function (pmf) of the ZIMHPD is given by

f (x) =




! + (1� !) 1

�(1;�;�+�)
; x = 0

(1� !) 1
�(1;�;�+�)

∑[ x
2
]

k=0

(x � k)!�x�2k�k

(�)x�k(x � 2k)!k!
; x = 1; 2; :::

(1)

where ! 2 [0; 1), � > 0, � > 0, � � 0 and �(a; b; �) =
1∑
r=0

(a)r �r

(b)r r !
is the con�uent hypergeometric

function with (a)r = a(a + 1)(a + 2):::(a + r � 1) = �(a+r)
�(a)

, for r = 1; 2; ::: and (a)0 = 1. For more

details on con�uent hypergeometric series, see [7] or [8]. Clearly when � = 1, the ZIMHPD reduces

to the ZIHD, when � = 0, the ZIMHPD reduces to the ZIHPD and when � = 1 and � = 0, the

ZIMHPD reduces to the ZIPD.

Through this paper we develop further a modi�ed version of the ZIMHPD which we call the

�zero-in�ated generalized hyper-Poisson (ZIGHPD) distribution� and discuss some of its important

statistical properties. In section 2, we present the de�nition of the ZIGHPD and obtain its probability

generating function, expressions for its mean and variance, and recursion formulae for probabilities, raw

moments and factorial moments. Further, the estimation of the parameters of the model is discussed

© 2022 Author(s). (https://www.thegsa.in/).



Zero-in�ated Generalized Hyper Poisson Distribution Kumar and Ramachandran

in section 3 and a test procedure is constructed in section 4. In section 5 both the procedures

discussed in sections 3 and 4 are illustrated with its relevence with the help of a real life data set.

We need the following series representations in the sequel.

1∑

x=0

1∑

r=0

A(r; x) =

1∑

x=0

x∑

r=0

A(r; x � r) (2)

1∑

x=0

1∑

r=0

A(r; x) =

1∑

x=0

[ x
m
]∑

r=0

A(r; x � rm): (3)

2 De�nition and Properties

We present the de�nition of the ZIGHP distribution and discuss some of its properties.

De�nition 1. A discrete random variable M is said to follow the �zero-in�ated generalized hyper-

Poisson distribution or in short ZIGHPD" with parameters !, �, �, � and 
 if its p.m.f is

g(m) = P (M = m)

=





! + (1� !) 1
�(1;�;�+�+
)

; m = 0

(1� !) 1
�(1;�;�+�+
)

[m
3
]∑

j=0

[m
2
]∑

k=0

(1)m�k�2j

(�)m�k�2j

�m�2k�3j

(m�2k�3j)!
�k

k!

 j

j!
; m = 1; 2; :::

0; otherwise

(4)

in which ! 2 [0; 1), � > 0, � > 0, � � 0 and 
 � 0.

Important special cases of the ZIGHPD includes the following cases.

1. when 
 = 0, the ZIGHPD reduces to the zero-in�ated modi�ed hyper-Poisson distribution

(ZIMHPD) distribution of [3].

2. when � = 
 = 0 the ZIGHPD reduces to the ZIHPD of [5] with p.m.f. (1).

3. when 
 = 0, � = 1 the ZIGHPD distribution reduces to the zero-in�ated Hermite (ZIH)

distribution of [4].

4. when � = 
 = 0, � = 1 the ZIGHPD distribution reduces to the zero-in�ated Poisson (ZIP)

distribution of [6].

5. when ! = 0, the distribution reduces to the generalized hyper-Poisson distribution (GHPD)

distribution of [2].

Now we obtain the following results.

Result 2.1. The probability generating function (p.g.f) G(t) of the ZIGHPD with p.m.f (4) is the

following.

G(t) = ! + (1� !) �(1;�;�t + �t
2 + 
t3)

�(1;�;�+ � + 
)
: (5)
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Proof. By de�nition, the p.g.f of the ZIGHPD having p.m.f (4) is given by

G(t) =

1∑

m=0

f (m)tm

=

{
! +

(1� !)
�[1; 
; (�+ � + 
)]

}
+

(1� !)
�(1;�;�+ � + 
)

1∑

m=1

[m
3
]∑

j=0

[m
2
]∑

k=0

tm
(1)m�k�2j
(�)m�k�2j

� �m�2k�3j

(m � 2k � 3j)!

�k

k!


 j

j!

= ! +
(1� !)

�(1;�;�+ � + 
)

1∑

m=0

[m
3
]∑

j=0

[m
2
]∑

k=0

(1)m�k�2j
(�)m�k�2j

�m�2k�3j

(m � 2k � 3j)!

�k

k!


 j

j!
tm

= ! +
(1� !)

�(1;�;�+ � + 
)

1∑

m=0

[m
3
]∑

j=0

[m
2
]∑

k=0

1

(�)m�k�2j

(
m � k � 2j

m � 3j � k
)

�
(
m � 3j � k

k

)
�m�2k�3j�k
 jtm: (6)

Applying the series expansion (3), we get (6) as

G(t) = ! +
(1� !)

�(1;�;�+ � + 
)

1∑

m=0

1∑

j=0

[m
2
]∑

k=0

1

(�)m+j�k

(
j +m � k
m � k

)(
m � k
k

)

� �m�2k�k
 jtm+3j

= ! +
(1� !)

�(1;�;�+ � + 
)

1∑

m=0

1∑

j=0

1∑

k=0

1

(�)m+j+k

(
m + j + k

m + k

)(
m + k

k

)

� �m�k
 jtm+3j+2k : (7)

Applying the series expansion (2) in the above, we get (7) as

G(t) = ! +
(1� !)

�(1;�;�+ � + 
)

1∑

j=0

1∑

m=0

m∑

k=0

1

(�)j+m

(
j + k

m

)(
m

k

)
�m�k�k
 jtm+3j+k (8)

= ! +
(1� !)

�(1;�;�+ � + 
)

1∑

j=0

j∑

m=0

m∑

k=0

1

(�)j

(
j

m

)(
m

k

)
�m�k�k
 j�mt3j�2m+k

= ! +
(1� !)

�(1;�;�+ � + 
)

1∑

j=0

j∑

m=0

1

(�)j

(
j

m

) m∑

k=0

(
m

k

)
(�t)m�k(�t2)k(
t3)j�m

= ! +
(1� !)

�(1;�;�+ � + 
)

1∑

j=0

j∑

m=0

1

(�)j

(
j

m

)(
�t + �t2

)j
(
t3)j�m
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G(t) = ! +
(1� !)

�(1;�;�+ � + 
)

1∑

j=0

1

(�)j

j∑

m=0

(
j

m

)(
�t + �t2

)j
(
t3)j�m

= ! +
(1� !)

�(1;�;�+ � + 
)

1∑

j=0

1

(�)j

(
�t + �t2 + 
t3

)j
;

which on simpli�cation gives (5).

Result 2.2. The mean and variance of the ZIGHPD with p.g.f (5) are

Mean =
(1� !)
�

(�+ 2� + 3
) �1

and

V ar iance =

{(
2

�+ 1
�2 �

(1� !)
�

�2
1

)
(�+ 2� + 3
)2 + �1 (�+ 4� + 9
)

}

� (1� !)
�

;

where �j =
d0
dj

for j = 1; 2, in which d0 = ��1(1;�;�+ � + 
) and dj = ��1(1 + j ;�+ j ;�+ � + 
).

Result 2.3. For m � 0 a simple recursion formula for probabilities g(m) = gm(�
�) of the ZIGHPD is

the following, in which �� + j = (1 + j; �+ j) and �(j) = 1+j

�+j
.

g1(�
�

) = �(0)d1
(
�g0(�

�

+ 1)� !
)
; f or m = 0 (9)

g2(�
�

) =
�(0)

2
d1
(
�g1(�

�

+ 1) + 2�(g0(�
�

+ 1)� !)
)
; f or m = 1 (10)

g3(�
�

) =
�(0)

3
d1
(
�g2(�

�

+ 1) + 2�g1(�
�

+ 1) + 3
(g0(�
�

+ 1)� !)
)
; f or m = 2 (11)

and

gm+1(�
�

) =
�(0)

m + 1
d1
(
�gm(�

�

+ 1) + 2�gm�1(�
�

+ 1) + 3
gm�2(�
�

+ 1)
)
; f or m > 2: (12)

Proof. The p.g.f of the ZIGHPD can be written as

G(t) = ! + (1� !) �(1;�;�t + �t
2 + 
t3)

�(1;�;�+ � + 
)

=

1∑

m=0

tmgm(�
�): (13)

On di�erentiating (13) with respect to t, we obtain the following.

1∑

m=0

(m + 1)gm+1(�
�)tm = (1� !)d0�(0)

(
�+ 2�t + 3
t2

)
(14)

� �(2;�� + 1;�t + �t2 + 
t3):
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Also, from (13), we have
1∑

m=0

gm(�
� + 1)tm = ! + (1� !)d�0�(0)�(2;�� + 1;�t + �t2 + 
t3): (15)

Combining (14) and (15), we get

1∑

m=0

(m + 1)gm+1(�
�)tm =

{
�

(
1∑

m=0

gm(�
� + 1)tm � !

)
+ 2�t

(
1∑

m=0

gm�1(�
� + 1)tm � !

)
+3
t2

(
1∑

m=0

gm�2(�
� + 1)tm � !

)}
d1�

(0): (16)

Now, on equating the coe�cients of t0 on both sides of (16), we get (9), on equating the coe�cients

of t1 on both sides of (16), we get (10), on equating the coe�cients of t2 on both sides of (16), we

get (11) and on equating the coe�cients of tm for m > 2 on both sides of (16), we get (12).

Result 2.4. For r � 0, the recursion formula for raw moments �r(�
�) of the ZIGHPD is

�r+1(�
�) = �(0)d1

{
r∑

k=0

(
r

k

)
�r�k(�

� + 1)(�+ 2k+1� + 3k+1
)� !(�+ 2k+1� + 3k+1
)

}
: (17)

Proof. For any t 2 < = (�1;1) and i =
p�1, the characteristic function of the ZIGHPD is

H(t) = G(e it)

= ! + (1� !) �(1;�;�e
it + �e2it + 
e3it)

�(1;�;�+ � + 
)

=

1∑

r=0

�r(�
(�))

(i t)r

r !
: (18)

Di�erentiating (18) with respect to t, we get

1∑

r=0

�r+1(�
�)
(i t)r

r !
= (1� !)d0�(0)

(
�e it + 2�e2it + 3
e3it

)
(19)

� �(2;�� + 1;�e it + �e2it + 
e3it):

Also from (18), we have
1∑

r=0

�r(�
� + 1)

(i t)r

r !
= ! + (1� !)d�0�(2;�� + 1;�e it + �e2it + 
e3it): (20)

Combining (19) and (20), we obtain

1∑

r=0

�r+1(�
�)
(i t)r

r !
= �(0)d1�

(
1∑

r=0

1∑

k=0

�r(�
� + 1)

(i t)k

k!
� !

1∑

k=0

(i t)k

k!

)
+ 2�(0)d1�

�
(

1∑

r=0

1∑

k=0

�r(�
� + 1)

(2i t)k

k!
� !

1∑

k=0

(2i t)k

k!

)
+ 3�(0)d1


�
(

1∑

r=0

1∑

k=0

�r(�
� + 1)

(3i t)k

k!
� !

1∑

k=0

(3i t)k

k!

)
; (21)
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in the light of (2). On equating the coe�cients of (it)r

r !
in (21), we get (17).

Result 2.5. For r � 0, the recursion formula for factorial moments �[r ](�
�) of the ZIGHPD is

�[r+1](�
�) = �(0)d1

{
�
(
�[r ](�

� + 1)� !
)
+ 2�

(
1∑

r=0

�[r�1](�
� + 1)� !

)}
(22)

+

{
�(0)d13


(
1∑

r=0

�[r�2](�
� + 1)� !

)}
:

Proof. The factorial moment generating function F (t) of the ZIGHPD with p.g.f (5) is the following.

F (t) = G(1 + t)

= ! + (1� !)�[1;�;�(1 + t) + �(1 + t)2 + 
(1 + t)3]

�(1;�;�+ � + 
)

=

1∑

r=0

�[r ](�
�)
t r

r !
(23)

Di�erentiating (23) with respect to t, we get

1∑

r=0

�[r+1](�
�)
t r

r !
= (1� !)d0�(0)�[2;��;�(1 + t) + �(1 + t)2 + 
(1 + t)3] (24)

�
(
�+ 2�(1 + t) + 3
(1 + t)2

)
:

Also, from (23) we have

1∑

r=0

�[r ](�
� + 1)

t r

r !
= ! + (1� !)d�0 �[2;�� + 1;�(1 + t) + �(1 + t)2 + 
(1 + t)3]: (25)

Now, combining (24) and (25) leads to

1∑

r=0

�[r+1](�
�)
t r

r !
= d1�

(0)

(
1∑

r=0

�[r ](�
� + 1)

t r

r !
� !

)
(
�+ 2�(1 + t) + 3
(1 + t)2

)
: (26)

On simplifying (26) and equating the coe�cients of tr

r !
on both sides, we get (22).

3 Maximum Likelihood Estimation

Here we consider the estimation of the parameters !, �, �, � and 
 of the ZIGHPD by the method

of maximum likelihood. For any y = 0; 1; 2; :::, let A(y) be the observed frequency of y events and

let z be the highest value of y observed. Then the likelihood function of the sample is given by

L(�; y) =

z∏

y=0

[f (y)]A(y);
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where f (y) is the p.m.f of the ZIGHPD given in (4).

Now L(�; y) can be written as

L(�; y) = (f (0))s
z∏

y=1

(f (y))A(y);

where s = A(0).

Then the log-likelihood function can be written as

lnL(�; y) = s ln

(
! +

(1� !)
�(1;�;�+ � + 
)

)
+

z∑

m=1

A(m)

� ln


 (1� !)
�(1;�;�+ � + 
)

[m
3
]∑

j=0

[m
2
]∑

k=0

(1)m�k�2j
(�)m�k�2j

�m�2k�3j

(m � 2k � 3j)!

�k

k!


 j

j!


:

(27)

Assume that !̂, �̂, �̂, �̂ and 
̂ be the maximum likelihood estimators of the parameters !, �, �,

� and 
̂ of the ZIGHPD. Now, on di�erentiating the log-likelihood function (27) with respect to !,

�, �, � and 
̂ and equating to zero, we obtain the following likelihood equations:

@ lnL

@!
= 0;

which implies

s [�(1;�;�+ � + 
)� 1]

!�(1;�;�+ � + 
) + (1� !) �
z∑

m=1

A(m)

(1� !) = 0; (28)

@ lnL

@�
= 0;

which implies

s(1� !)
[!�(1;�;�+ � + 
) + (1� !)]�(1;�;�+ � + 
)

1∑

n=0

(�+ � + 
)n

(�)n
[ (�)�  (�+ n)]

z∑

m=1

A(m)





1∑
n=0

(�+�+
)n

(�)n
[ (�)�  (�+ n)]

�(1;�;�+ � + 
)





+

1
(�)m�k�2j

[ (�)�  (�+m � k � 2j)]

[m
3
]∑

j=0

[m
2
]∑

k=0

(1)m�k�2j

(�)m�k�2j

�m�2k�3j�1

(m�2k�3j�1)!
�k

k!

 j

j!

= 0; (29)

@ lnL

@�
= 0;

which implies

s(1� !)�(1;�;�+ � + 
)

!�(1;�;�+ � + 
) + (1� !)�(2;�+ 1;�+ � + 
)�
z∑

m=1

A(m)�
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


�(2;�+ 1;�+ � + 
)

��(1;�;�+ � + 
)
�

[m
3
]∑

j=0

[m
2
]∑

k=0

(1)m�k�2j
(�)m�k�2j

�m�2k�3j�1

(m � 2k � 3j � 1)!

�k

k!


 j

j!



 = 0; (30)

@ lnL

@�
= 0;

which implies

s(1� !)�(1;�;�+ � + 
)

!�(1;�;�+ � + 
) + (1� !)�(2;�+ 1;�+ � + 
)�
z∑

m=1

A(m)�



�(2;�+ 1;�+ � + 
)

��(1;�;�+ � + 
)
�

[m
3
]∑

j=0

[m
2
]∑

k=0

(1)m�k�2j
(�)m�k�2j

�m�2k�3j

(m � 2k � 3j)!

�k�1

(k � 1)!


 j

j!



 = 0; (31)

and
@ lnL

@

= 0;

which implies

s(1� !)�(1;�;�+ � + 
)

!�(1;�;�+ � + 
) + (1� !)�(2;�+ 1;�+ � + 
)�
z∑

m=1

A(m)�



�(2;�+ 1;�+ � + 
)

��(1;�;�+ � + 
)
�

[m
3
]∑

j=0

[m
2
]∑

k=0

(1)m�k�2j
(�)m�k�2j

�m�2k�3j

(m � 2k � 3j)!

�k

k!


 j�1

(j � 1)!



 = 0: (32)

On solving the likelihood equations (28), (29), (30), (31) and (32) with the help of some

mathematical softwares, say Mathematica, one can obtain the maximum likelihood estimators of

the parameters of the proposed distribution. In order to examine the existence of unique solutions to

the above likelihood equations we have considered the second derivatives and observed that the second

derivatives at the solution of the likelihood equations as negative and by utilizing the Mathematica

software.

4 Testing

In order to test the signi�cance of the in�ation parameter in zero-in�ated models, we can use any of

the test procedures such as the generalized likelihood ratio test (GLRT), Wald test, Raos e�cient

score test (REST) etc. Here we adopt the GLRT procedure for testing the signi�cance of the in�ation

parameter ! of the ZIGHPD.

The null hypothesis is given by

H0 : ! = 0 against the alternative hypothesis H1 : ! 6= 0:

The test statistic suggested in the case of GLRT is given by

�2 ln = 2 (�1 � �2) ; (33)

where, �1 = lnL(�̂; y), where �̂ is the maximum likelihood estimator for � = (!; �; �; �; 
) with no

restrictions, and �2 = lnL(�̂�; y), in which �̂� is the maximum likelihood estimator for � under the null

hypothesis H0. The test statistic de�ned in (33) is asymptotically distributed as �2 with one degree

of freedom.
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5 Applications

Here we consider a real life biological data and illustrate the procedures of maximum likelihood

estimation and GLRT which are discussed in sections 3 and 4. The data is based on the distribution of

European Corn borer Pyrausta Naubilalis in �eld corn [1] and is presented in Table 1. We have �tted

the ZIGHPD to the data set and considered the �tting of the models - ZIHP, zero-in�ated alternative

hyper-Poisson (ZIAHP), ZIP, zero-in�ated generalized Poisson (ZIGP) and GHPD for comparison.

For comparing the models we computed the values of �2, AIC, BIC and AICc. The numerical results

obtained are presented in Tables 1. Based on the computed values of �2, AIC, BIC and AICc as

presented in Table 1, one can observe that the ZIGHPD gives a better �t to the data set while all

other models such as ZIHP, ZIAHP, ZIP, ZIGP and GHPD are not appropriate.

We have also calculated the values of the test statistic. The value of the test statistic for

lnL(�̂�;w) = �236:84 and lnL(�̂;w) = �213:56 is given by 46.56. The critical value of the test

having 5% level of signi�cance and degree of freedom one is 3.84, so that the null hypothesis is rejected

in all the cases. Thus, we conclude that the additional parameter ! in the model is signi�cant.

Table 1: Distribution of the spread of European Corn borer Pyrausta Naubilalis in �eld corn [1] and the expected

frequencies computed using ZIHP, ZIAHP, ZIP, ZIGP, GHP and ZIGHP.

Count Observed frequency ZIHPD ZIAHPD ZIPD ZIGPD GHPD ZIGHPD

0 206 253.6 265.73 252.15 300.3 252.8 202.4

1 143 143.4 148.4 151.43 160.34 162.7 140.5

2 128 125.2 144.2 140.6 95.5 134.4 120.8

3 107 107.9 127.1 118.35 104.6 126.048 99.8

4 71 81.7 80.361 75.78 80.81 80.4 80.4

5 36 27.682 7.29 23.9 34.2 10.5 38.5

6 32 20.4 4.6 7.1 6.25 7.4 39.4

7 17 13.7 2.3 5.4 4.12�10�4 3.6 12.6

8 14 4.4 1.25 4.02 3.25�10�6 1.12 19.2

9 7 2.3 0.5 1.25 1.96�10�9 0.98 5.2

10 7 1.62 0.25 1.6 2.3�10�15 0.87 7.9

11 2 0.002 0.0024 0.0015 1.06�10�21 0.30 1.2

12 3 0.06 0.01 0.35 9.8�10�29 0.15 1.8

13 3 0.027 0.006 0.021 7.5�10�45 0.2 2.3

14 1 0.0001 0.00003 0.006 1.79�10�53 0.46 2.2

15 1 0.0006 0.00009 0.0002 4.03�10�64 0.07 1.1

16 1 0.0007 0.000006 0.00004 1.05�10�75 0.002 1.7

17 2 0.008 0.000007 0.041 2.6�10�84 0.00035 3.5

18 1 0.000004 0.000009 0.000008 4.86�10�95 0.000001 1.5

Total 782 782 782 782 782 782 782

df 5 3 6 3 3 6

Estimates 
=0.22 
=12.09 
=3.95 
=3.28 
=0.16 �=0.64

!=0.79 !=0.59 !=0.17 !=0.15 !=0.31 !=0.26

�=0.92 �=7.0009 �=0.0000003 �=0.61 �=0.21

�=0.59


=0.025

�2-value 154.25 880.21 188.64 1193.01 41.13 7.48
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P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.2787

AIC 1628.6 1733.5 910.6 2841.4 1322.5 840.25

BIC 1629.6 1734.3 911.8 2842.6 1323.3 841.25.5

AICc 1633.4 1739.6 915.3 2846.2 1327.2 845.7
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Abstract

The univariate Burr distribution and its properties and applications have been studied quite extensively in the

literature. Some generalizations, as well as multivariate extensions of it, have also been proposed for greater

�exibility in modeling bivariate and multivariate data. In this paper, we construct generalized bivariate Burr

(Type VII) distributions through conditional speci�cation and discuss some of its properties. We conjecture at

this point that an analogous development can be made in deriving other bivariate Burr family type distributions.

We also provide some results which reveal the relationship between a Burr type distribution(s) with a beta type

1 distribution.

Keywords: Burr Type distributions, Bivariate Burr Type distributions, Conditional speci�cation, Total positivity

property, Dependence structures.

1 Introduction

In the last two decades, considerable amount of work has been done on introducing various bivariate

non-normal models and then discussing their properties, �t and applications; for elaborate details, one

may refer to the books by [5] and [2] and the references therein. One such model that has been

studied not so extensively in the literature is the bivariate Burr type distributions; for pertinent details,

see [7] in which the author primarily focuses on Burr Type XII (which is essentially a Pareto (Type

IV) model) and its associated skewness and kurtosis measures. The Burr system of distributions was

constructed in 1941 by Irving W. Burr. Since the corresponding density functions have a wide variety

of shapes, this system is useful for approximating histograms, particularly when a simple mathematical

structure for the �tted cumulative distribution function (c.d.f.) is required. Other applications include

quantal response, approximation of distributions and development of non-normal control charts. A

number of standard theoretical distributions are limiting forms of Burr distributions. The original

motivation for developing the Burr system was to provide a method for �tting c.d.f.'s to frequency

data. Burr choose to work with the c.d.f. F (x) satisfying the di�erential equation

dy

dx
= y (1� y) g (x; y) ;

where y = F (x): The function g must be positive for 0 � y � 1 and x in the support of F (x). The

solutions F (x) of Burr's di�erential equation can be classi�ed by their functional forms, each of which

gives rise to a family of c.d.f.s within the Burr system as di�erent choices of g(x; y) generate various

solutions for F (x). In this article, we focus on the development bivariate Burr (Type VII) distributions

© 2022 Author(s). (https://www.thegsa.in/).
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via conditional speci�cation. The �exibility of Burr Type distributions and its importance as a growth

curve have attracted many researchers to study this distribution and various generalizations. Many

of these generalizations were introduced in order to provide greater �exibility while modeling either

skewed and/or heavy tailed data. We begin our discussion by considering the following of Burr

(type-VII) distribution described in detail in [5]:

The pdf of a Burr (Type VII) distribution distribution is given by

f (x) =
2k(exp(2x))k

(1 + exp(2x))k+1
� I(�1 < x <1); k > 0: (1)

Next, observe that the speci�cation of joint distributions by means of conditional densities has received

considerable attention in the literature. A study of bivariate distributions can not be complete without

the knowledge of univariate distributions, which would naturally form the marginal or conditional

distributions. There are various ways of conditional speci�cations by which one can identify or

(classify) a family of bivariate distributions. We know that if we are given both the families of

conditional densities, of X given Y and Y given X, then the information is more than enough to

characterize the joint density of (X; Y ). For a good reference on the theory and methodology related

to conditional speci�cation, the reader is suggested the book by [1] and the references cited therein.

The rest of the paper is organized as follows. In Section 2; we discuss brie�y the idea of conditional

speci�cation of bivariate distributions. In Section 3; we discuss and derive the joint distribution of

a bivariate Burr (Type VII) distributions via conditional speci�cation from the information that both

the conditionals (i.e., X given Y and Y given X) are in the same family of univariate Burr (Type VII)

distribution. In Section 4, we discuss some useful structural properties of the derived distribution in

Section 3: In Section 5; we discuss some useful distributional results which focuses on relationship

between a Burr and Beta distribution of the �rst kind and provide some open questions for future

works in this direction. Finally, in Section 6; we provide some concluding remarks.

2 Conditional speci�cation of a bivariate distribution

There are several di�erent conditional speci�cations through which one can identify or (classify) a

family of bivariate distributions. If we are given both families of conditional densities, of X given Y

and Y given X, then the information is more than enough to characterize the joint density of (X; Y ).

We focuses on cases in which the conditional densities are only assumed to be known to belong

to speci�ed parametric families. The models consequently derived are called conditionally speci�ed

models. Before proceeding further, we mention the following theorem which is very useful in the rest

of our discussion. It is originally due to Aczel (see also [1]).

Theorem 2.1. All solutions of the equation

r∑

i=1

fi(x)�i(y) =

s∑

j=1

gj(y)	j(x); x 2 S(X); y 2 S(Y );

where �i (for i = 1; 2; ::; r) and	j (for j = 1; 2; ::; s) are given systems of mutually linearly independent

functions, are of the form

f (x) = C	(x);

and

30



Gujarat Journal of Statistics and Data Science Vol. 38, pp. 29�38, 2022

g(y) = D�(y);

where D = C 0:

3 Bivariate Burr(Type VII) distribution

Suppose, we want for each �xed x ,

f (y jX = x) = 2k1(x)
(exp(2y))k1(x)

(1 + exp(2y))k1(x)+1
� I(�1 < y <1);

and, for each �xed y ,

f (x jY = y) = 2k2(y)
(exp(2x))k2(y)

(1 + exp(2x))k2(y)+1
� I(�1 < x <1);

where k1(x) is a function depending upon x and k2(y) is a function depending upon y and they

are both unknown. Next we want to identify the class of all bivariate distributions for which both

the conditionals are of Burr(Type VII) with the form mentioned above. For that we consider the

following: Let g(x) and h(y) be the marginals of X and Y respectively. Then writing down the joint

density of (X; Y ) as a product of marginals and conditionals we can have

g(x)f (y jX = x) = h(y)f (x jY = y) : (2)

Equivalently, we can write

g(x)2k1(x)
(exp(2y))k1(x)

(1 + exp(2y))k1(x)+1
= h(y)2k2(y)

(exp(2x))k2(y)

(1 + exp(2x))k2(y)+1
: (3)

De�ne

�1(x) = g(x)k1(x);

and

�2(y) = h(y)k2(y):

Then, we can write

exp [log �1(x) + k1(x)2y � (k1(x) + 1) log(1 + exp(2y))]

= exp [log �2(y) + k2(y)2x � (k2(y) + 1) log(1 + exp(2x))] ; (4)

which we can re-write equivalently as

log f�1(x)(1 + exp(2x))g+ k1(x) f2y � log(1 + exp(2y))g

= log f�2(y)(1 + exp(2y))g+ k2(y) f2x � log(1 + exp(2x))g : (5)
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If we write

f1(x) = log(�1(x)(1 + exp(2x)));

f2(x) = k1(x);

g1(y) = log(�2(y)(1 + exp(2y)));

g2(y) = k2(y)

�1(y) = 1;

�2(y) = 2y � log
(
1 + e2y

)
;

	1(x) = 1;

	2(x) = 2x � log
(
1 + e2x

)
; (6)

then, equation (3) can be rewritten as

2∑

i=1

fi(x)�i(y) =

2∑

i=1

gi(x)	i(x):

This implies according to Aczel's theorem ([1]) that a general solution to the above equation, will be

f1(x) = a + b [2x � log (1 + exp(2x))] ;

f2(x) = c + d [2x � log (1 + exp(2x))] ;

g1(y) = a + c [2y � log (1 + exp(2y))] ;

g2(y) = b + d [2y � log (1 + exp(2y))] ; (7)

where a; b; c; d are unknown parameters. Note that k2(y) = b + d [2y � log (1 + exp(2y))] ; and

k1(x) = c + d [2x � log (1 + exp(2x))] :

Since, f2(x) = c+d [2x � log (1 + exp(2x))] = k1(x) > 0; for all x 2 R; and� log (1 + exp(2x)) <

0; for all x 2 R; it follows that c should be positive (c > 0) and (d � 0). Similarly, from

g2(y) = k2(y) > 0; we obtain that b > 0 and d � 0. The constant a is a normalizing constant

and it can be evaluated from the condition
∫
1

�1

∫
1

�1
f (x; y)dxdy = 1; or from the condition that

the marginal densities when integrated over (�1;1) is 1: To get the exact expression of the joint

density f (x; y); we need to simplify �1(x) and/ or �2(y): We have from (3)

f1(x) = a + b [2x � log (1 + exp(2x))] = log (�1(x) (1 + exp(2x))) :

From this, we get

�1(x) =
exp(a) exp (2bx)

[1 + exp (2bx)]b+1
:

Using the expression of �1(x), we obtain the joint density of (X; Y ) as

fX;Y (x; y)

=
exp(a) exp f2bx + 2cy + 4dxyg (1 + exp(2y))d log(1+exp(2x))

(1 + exp(2x))b+2dy+1 (1 + exp(2y))c+1
I(�1 < (x; y) <1): (8)

The marginals densities can be obtained as follows. We have �1(x) = g(x)k1(x): Next, using explicit

expressions for �1(x) and k1(x) as obtained earlier, we get, the marginal density of X as
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gX(x) =
exp fa + 2bxg

(1 + exp(2x))b+1 [c + d f2x � log (1 + exp(2x))g]
I(�1 < x <1): (9)

We can study the rate of a random variable X, [see [4]] for pertinent details] with the following

de�nition:

Following Klugman et al. (1998) , the rate of a continuous random variable X is given by

�x = � lim
x!1

d log gX(x)

dx

= � lim
x!1

(
�

2 (�bc + be2y � 2cdy � d (e2y � c) log (e2y + 1) + 2de2yy + d)

(e2y + 1) (b + 2dy � d log (e2y + 1))

)

= 2: (10)

From the above, we can say that the tail of X is heavier. A similar behavior/pattern of the rate

function can be observed for the other random variable Y:

Similarly, from �2(y) = h(y)�2(y); we obtain the marginal density of Y as

hY (y) =
exp fa + 2cyg

(1 + exp(2y))c+1 [b + d f2y � log (1 + exp(2y))g]
I(�1 < y <1): (11)

Some representative bivariate density plots corresponding to the Eq. (9)) are provided in Figures

1� 4:

4 Structural properties of the bivariate Burr type (VII) distribu-

tion

In this section, we discuss some useful structural properties for the bivariate Burr (type-VII) distribution

given in Eq. (9) beginning with the discussion on several useful properties for the marginals associated

with it.

1. Result 1 The marginal densities corresponding to the bivariate density in Eq. (9) are log-

concave. Therefore, the marginals are unimodal.

Proof. Let us consider the marginal density of Y: From (11), one may obtain

@2 log (h(y))

@y 2
= �

((
e2y + 1

)2 (
b + 2dy � d log

(
e2y + 1

))2
)
�1

�

(
4(b2(c + 1)e2y + bde2y(4(c + 1)y � 1)

�de2y log(e2y + 1)(2b(c + 1) + d(4(c + 1)y � 1))

+d2(2e2yy(2(c + 1)y � 1)� 1) + (c + 1)d2e2y log2(e2y + 1))

)
: (12)

From (12), it is clear that for any choices of (a; b; c; d) 2 R the second order derivative is < 0:

Hence, the proof. Observe that the tails of log-concave densities are necessarily sub-exponential.

Similarly, the log-concavity for the distribution of X can be established.
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2. Result 2 The hazard rate function for the marginal densities [Eq. (9) and (10)] are always

decreasing for any choices of a; b; c; d 2 R; with d � 0:

Proof. Let us consider the marginal density of Y .

We have,

�(y) = �
h0(y)

h(y)

=
2 (�bc + be2y � 2cdy � d (e2y � c) log (e2y + 1) + 2de2yy + d)

(e2y + 1) (b + 2dy � d log (e2y + 1))
:

Consequently,

�0(y) = �

((
e2y + 1

)2 (
b + 2dy � d log

(
e2y + 1

))2
)
�1

�

(
4(b2(c + 1)e2y + bde2y(4(c + 1)y � 1) (13)

�de2y log(e2y + 1)(2b(c + 1) + d(4(c + 1)y � 1))

+d2
(
2e2yy(2(c + 1)y � 1)� 1) + (c + 1)d2e2y log2(e2y + 1)

))
: (14)

Note that, for any choices of (a; b; c; d) 2 R, �0(y) > 0: Therefore, from Theorem (b) of [3],

we can say that the hazard function decreasing. Hence, the proof.

3. Total positivity of order 2 property:

Let t11, t12, t21 and t22 be real numbers with 0 < t11 < t12 and 0 < t21 < t22: (X; Y ) has the

total positivity of order two (TP2) property i� for any such set of ti j 's,

fX;Y (t11; t21)fX;Y (t12; t22)� fX;Y (t12; t21)fX;Y (t11; t22) � 0: (15)

Theorem 4.1. The bivariate Burr type (VII) distribution has the TP2 property.

Proof. Let us consider di�erent cases separately. If 0 < t11 < t21 < t12 < t22, then for the

density function in (8), one can easily show that the condition in (12) is equivalent to

[
f1 + exp(2t21g

d log(1+exp(2t11))�log(1+exp(2t12))
]
�
[
f1 + exp(2t22g

d log(1+exp(2t21))�log(1+exp(2t11))
]

�
[
f1 + exp(2t11g

2d(t21�t22)
]
�
[
f1 + exp(2t12g

2d(t22�t21)
]

� 0: (16)

Observe that (15) holds for every 0 < t11 < t12 and 0 < t21 < t22: Similarly, other cases can

also be established.

Furthermore, TP2 is the most rigid dependence property. Consequently, the positive quadrant

dependence property (alternatively, the TP2 property) implies the following:
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(a) X and Y are positive quadrant dependent,

(b) X(Y ) is a positive regression dependent of Y (X);

(c) X(Y ) is a left tail decreasing in Y (X);

(d) P (X � x jY = y) is non-increasing in y for all x ,

(e) P (Y � y jX = x) is non-increasing in x for all y ,

(f) P (Y > y jX > x) is non-decreasing in x for all y ,

(g) P (Y � y jX � x) � P (Y � y)P (X � x),

(h) P (Y > y jX > x) � P (Y > y)P (X > x).

4. Dependence structure:

Observe that the joint density in (8) can be re-written as

f (x; y) = Cr1(x)r2(y) exp
(
~qT1 (x)M2~q2(y)

)
;

where C = Normalizing constant; r1(x) =
exp(2bx)

(1+exp(2x))b+1
, r2(y) =

exp(2cy)

(1+exp(2y))c+1
,

~q1(x) = (x log(1 + exp(2x)), ~q2(y) = (1 log(1 + exp(2y)), and

M2 =

[
4d �2d

�2 d

]
:

Then, according to [1], based on the elements of the matrix M2, we can have the following

di�erent scenarios:

� One will observe positive correlation i� 4d2 � 4d > 0;

� The distributions of X and Y will be independent i� d = 0:

For this bivariate probability model, since d � 0; the quantity 4d2 � 4d will always be

non-negative. Consequently, the e�ective range of the correlation coe�cient will be [0; 1]:

Regarding bivariate aging pattern, since the bivariate density in Eq. (8), has the positive

dependence property (alias, the TP2 property), according to [6], the following holds:

Positive dependence and positive one-dimensional aging implies positive bivariate aging.

5. Next, we propose the following result which will be helpful for us in characterizing the bivariate

Burr (type VII) distribution.

Relation between Burr(Type VII) and Beta distribution

Lemma 4.1. If a random variable X � Burr(TypeV II) with parameter k , then Y = exp(2X) �

Beta2(k; 1); where B2(k; 1) means Beta distribution of the second kind.

Proof. We have

f (x) = 2k
(exp(2x))k

(1 + exp(2x))k+1
� I(�1 < x <1):

Let us consider Y = exp(2X), then y 2 (0;1): Then, the Jacobian of the above transformation

is given by jJ( x
y
)j = 1

2y
: Therefore, the density of Y is given by
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fY (y) =
2ky k

(1 + y)k+1

(
1

2y

)
=

y k�1

B(k; 1) (1 + y)k+1
� I(0 < y <1):

Hence Y = exp(2X) � Beta2(k; 1):

6. Characterization via Beta distribution

Previously we mentioned that we want the class of all bivariate Burr(Type VII) densities which

will have conditionals in the same family. Recalling that speci�cally we want

XjY = y � Burr(TypeV II(k2(y)));

and

Y jX = x � Burr(TypeV II(k1(x)));

where the expressions for both the unknown parameters k2(y) and k1(x) is given earlier.

Next, using the relationship with Beta distribution we can write

� E [exp(2X)jY = y ] = k2(y)
(k2(y)+1)

:

� E [exp(2Y )jX = x ] = k1(x)
(k1(x)+1)

:

Then, we have the following theorem.

Theorem 4.2. If the joint density of two continuous random variables (X; Y ) with S(X) = (�1;1),

S(Y ) = (�1;1) is of the form as in (8), with

XjY = y � Burr

(
TypeV II(k2(y))

)
;

where k2(y) = b + d � (2y � log(1 + exp(2y)));

and E[exp(2Y )jX = x) = k1(x)
(k1(x)+1)

;

where k1(x) = c + d

(
2x � log (1 + exp(2x))

)
:

Then, the above conditions uniquely determines the class of all Bivariate Burr(Type VII)

distributions with parameters a; b; c; d with a =
b(1+ c

d
)�log( c

d
)

1+ d

c

.

5 Some other useful results and some open questions

First of all we note that all the members of the Burr Type distributions with one parameter(viz.(Type

II,Type V II,Type V III; Type X,Type XI)) can be transformed to a Beta distribution of both kind.

We can illustrate few of them, for examples,

(a) If X � Burr(TypeV II) with parameter k , then Y = exp(2X) � Beta2(k; 1):.

(b) If X � Burr(Type(V III)) with parameter k , then Y = �
2
(tan�1(exp(x))) � Beta1(k; 1):

(c) If X � Burr(Type(II)) with parameter k ,then Y = 1� exp(�X) � Beta2(k; 1):
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Again, we mention the following straightforward result:

Result: If U � Unif orm(0; 1) then Z = U
1

k � Beta1(k; 1).

So, if we consider the transformation Y =  (U
1

k ), then this transformation includes the class of all

one parameter exponential family(OPEF, henceforth) densities as Uniform (0; 1) is a member of the

OPEF and we consider here  to be monotonically increasing, invertible, di�erentiable and one-to-one

function of the random variable U and we know that any one-to-one function of the members of the

OPEF is itself a member of the OPEF. However we will consider the following:

� First consider all bivariate densities with conditionals in F , and let us call that FC , where C

stands for conditional.

� Next we try to identify the class of all densities with conditionals in FI, where I stands for the

identity function.

� Suppose that F (x; y)�FCI and consider (X 0; Y 0) = ( (X);  (Y )):

Then we claim that (X 0; Y 0)�FC .

Consequently, the above compel us to consider the following questions as well which are as follows:

(i) Is it possible to �nd mixtures of FC distributions?

(ii) Is it possible to bring in the concept of hidden truncation in this context?

(iii) Can this family of densities be used e�ciently in Stress-Strength analysis as an application?

6 Concluding remarks

The concept of conditional speci�cation of bivariate distributions is not new but, except in normal

and exponential families (see [1], it has not been well developed for other distributions in the

literature. Computational di�culties, absence of analytically tractable forms of the marginal as well

as bivariate densities, without a doubt discouraged further work in this direction. In this paper, we

have addressed the characterization of a particular type of bivariate Burr distributions (Type VII) via

conditional speci�cation, where both the conditional distributions belonging to the same family. The

results obtained in this paper can be equivalently mimicked in extending to a multivariate scenario

albeit computational complexity. However, a daunting question will remain regarding its analytical

tractability and associated inference which we plan to consider in a future research.
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Appendix

In the �gures below we provide some representative bivariate Burr (Type VII) type density (Eq. (8))

plots for various parameter choices.

Figure 1: The Bivariate Burr (type VII) density for

a = 2:75; b = 3; c = 4:5; d = 2

Figure 2: The Bivariate Burr (type VII) density

a = 1; b = 1; c = 1; d = 1:

Figure 3: The Bivariate Burr (type VII) density

a = 0:5; b = 0:8; c = 0:7; d = 0:025

Figure 4: The Bivariate Burr (type VII) density

a = 0:5; b = 0:8; c = 0:7; d = 0:025
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Abstract

For grouped bivariate data, the problem of simultaneously testing the assumptions of normality and

homoscedasticity is investigated. Tests are derived under the assumption of a smooth alternative to the

bivariate normal distribution, where the smooth alternative is speci�ed using Legendre polynomials. Score

statistics are obtained when the smooth alternatives are common across the di�erent groups, and when they

are di�erent across the groups. Both balanced and unbalanced data situations are considered. For determining

the order of the Legendre polynomials, a data-driven approach considered in the literature is recommended. The

performance of the tests are assessed based on estimated Type I error probabilities. The results are illustrated

using two examples.

Keywords: Bivariate normal distribution, Legendre polynomials, Score test, Smooth alternative.

AMS subject classi�cation: 62F03, 62H15

1 Introduction

Background

In the analysis of variance, two crucial assumptions are normality and homoscedasticity. Model

diagnostics are usually carried out in order to assess the validity of these assumptions. Parametric

tests for homoscedasticity are usually based on the normality assumption. Furthermore, formal tests

and graphical procedures for assessing normality usually assume homoscedasticity. In view of this,

it is important to jointly test the validity of both, without making either assumption. For grouped

data following a univariate linear regression model, joint testing of normality and homoscedasticity

is developed in [21]. In a subsequent article, [22], the authors addressed the same problem in a

one-way random e�ects model. The present article is an extension of the work reported in [21], when

the data are bivariate. In other words, we have bivariate data falling into di�erent groups, typically

based on the di�erent levels of a classi�cation variable, and we want to test bivariate normality along

with homoscedasticity. In particular, our methodology can be adopted to test bivariate normality

along with homoscedasticity in a bivariate one-way �xed e�ects model. Following [21] and [22], the

alternative to bivariate normality that we shall consider is speci�ed by embedding the class of possible

alternatives within the class of smooth alternatives introduced by [17]. This results in alternatives

that depend on a �nite number of parameters, the normal distribution being a special case. We can

then develop the score test for testing bivariate normality and homoscedasticity, simultaneously. We

start with the de�nition of a smooth alternative for the univariate case, as de�ned by [17].

© 2022 Author(s). (https://www.thegsa.in/).
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Smooth alternatives

Suppose we want to test if a continuous random variable Y follows the density f (y ;�), where the

vector � represents unknown parameters. An order k smooth alternative, denoted by gk(y ; �;�), is

de�ned as

gk(y ; �;�) = C(�;�) exp
{ k∑

i=1

�ihi(y ;�)
}
f (y ;�); (1)

where � = (�1; :::; �k)
0 is a vector of unknown parameters, C(�;�) is a normalizing constant, and

the fhi(y ;�)g are orthonormal polynomials, orthonormal with respect to f (y ;�). If all the �i 's are

zero, then the density in (1) reduces to the density f (y ;�). In other words, in order to assess the

validity of the density f (y ;�), the hypothesis of interest is that of testing if all the �i 's are zero. Thus

the hypothesis now involves only k parameters, assuming that k is known (the choice of k will be

addressed later).

Brief literature review

Score tests and their properties, under smooth alternatives, have been investigated extensively in the

literature; a detailed review is available in the book by [18], and in the thesis by [20]. For various

goodness of �t problems, theoretical investigations are available in [15], [11], [12], 1[13], [7], [6] and

[10]. In particular, these authors develop data driven smooth tests; i.e., the order k in (1) is chosen

using the data, based on a modi�ed BIC criterion. The authors also note that the k so obtained

converges to one in probability, the resulting score test is a consistent test against any alternative,

and the asymptotic null distribution of the test statistic is a chisquare distribution having df = 1. The

literature on the topic mostly addresses tests for the adequacy of a distribution, assuming the validity

of other parametric assumptions. However, [14] address the simultaneous testing of independence

and normality in a bivariate setup.

For testing multivariate normality when the covariance matrix is unstructured, several tests are

available in the literature. It should be noted that typically, tests for multivariate normality actually

test some property implied by multivariate normality. We refer to [16] for a review. Smooth tests

have also been attempted for the assessment of multivariate normality; see [18], Section 6.4. As

noted by these authors, and as we shall see, the problem of smooth tests for multivariate normality

is rather challenging when the dimension gets large, and the authors concentrate mostly on the

bivariate case. The article by [2] provides a thorough investigation of smooth tests for assessing

bivariate normality. For jointly testing multivariate normality and homoscedasticity, we are aware of

only two articles: [5] and [8], both in the context of multivariate models. In his work, [5] considers a

set up where multivariate data are available from several groups, and it is desired to test multivariate

normality along with the equality of the covariance matrices across the groups. The test is based

on several Hotelling's T 2 type statistics from the di�erent groups, and the associated F distributions

resulting from the multivariate normality and homoscedasticity. In other words, the test is based

on a property (namely, the F-distribution associated with the Hotelling's T 2 statistic) implied by

multivariate normality. The later article by [8] extend the work of [5] to missing data situations.

Furthermore, [9] provide an R code that can be used to carry out the test.

Summary of our contribution

Our set up is the same as that of [2] except that we are testing both bivariate normality and

homoscedasticity when the data fall into groups. The model and the problem are formulated in

the next section. Score tests are derived when we have smooth alternatives based on Legendre

polynomials. Under the smooth alternative formulation, score statistics are derived under two

scenarios: when there is a common smooth alternative across the di�erent groups, and when the
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smooth alternatives are di�erent across the groups. For determining the order of the Legendre

polynomials, a data-driven approach recommended in the literature will be used. The performance of

the tests are assessed based on estimated Type I error probabilities. The results are illustrated using

two examples.

2 The model and the testing problem

Suppose we have bivariate data grouped into a groups based on a classi�cation variable. Let Xl j , j

= 1, 2, ...., nl , be a bivariate sample of size nl from the lth group, l = 1, 2, ..., a. We assume that

the mean vector and the covariance matrix of Xl j are �l and �l , respectively. We want to test if the

Xl j 's come from bivariate normal populations, and if the �l 's are equal. Let's write

�l = (�l1; �l2)
0; �l =

(
�l11 �l12

�l12 �l22

)
; l = 1; 2; ::::; a;

�l = (�l11; �l12; �l22)
0; �̃ =

[
�1 �2 � � � �a

]
;

and � = �̃Q =
[
�1 �2 � � � �a

]
; (2)

where Q is the a� a Helmert matrix; i.e., an orthogonal matrix with �rst column having all elements

equal to 1=
p
a. Thus �̃ is a 3� a matrix containing all the variance and covariance parameters from

the a groups. Furthermore, the �l 's and �l 's are 3 � 1 vectors, l = 1, 2, ...., a, and the equality of

the �l 's is equivalent to �2 = �3 = :::: = �a = 0. We shall now introduce a smooth alternative to

bivariate normality based on Legendre polynomials, and then derive the corresponding score test.

3 Smooth alternatives and score tests

We shall adopt the methodology in [2] to come up with the Legendre polynomials required to specify

the smooth alternative to the bivariate normal distribution. Let bi denote the i
th normalized Legendre

polynomial on [0,1], i = 1, 2, ...., and let b0(u) = 1 for u 2 [0; 1]. Now de�ne the function bi j as:

bi j(u1; u2) = bi(u1)bj(u2); u1; u2 2 [0; 1]:

The collection fbi j ; i ; j = 0; 1; 2; ::::g can be arranged as an ordered sequence, say ~
, using the

following rule: the function bi j appears in ~
 before the function blk if one of the following conditions

is ful�lled:

i) i + j < l + k ,

ii) i + j = l + k and max(i ; j) > max(l ; k),

iii) i + j = l + k , max(i ; j) = max(l ; k) and i > l .

Denote the i th element of ~
 by ~
i . The �rst 20 elements are given by

~
0 = b00; ~
1 = b10; ~
2 = b01; ~
3 = b20; ~
4 = b02; ~
5 = b11;

~
6 = b30; ~
7 = b03; ~
8 = b21; ~
9 = b12; ~
10 = b40; ~
11 = b04; ~
12 = b31; ~
13 = b13;

~
14 = b22; ~
15 = b50; ~
16 = b05; ~
17 = b41; ~
18 = b14; ~
19 = b32; ~
20 = b23; (3)

where we note that each ~
 is a function of u1; u2 2 [0; 1].

For X = (X1; X2)
0 � N(�;�), let � = (�1; �2)

0, � =

(
�11 �12

�12 �22

)
, and � = (�11; �12; �22)

0. Let

M be a lower triangular matrix with positive diagonal elements such that MM 0 = ��1. The matrix
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M can be explicitly written as

M = M(�) =

(
m1 0

m2 m3

)
=




√
�22

j�j 0

��12√
�22j�j

1p
�22


 : (4)

For (y1; y2)
0 = M 0(x � �), let u1 = �(y1) and u2 = �(y2), where �(:) is the standard normal cdf.

With ~
i 's de�ned in (3), let 
i(x ;�;�) = ~
i(u1; u2) = ~
i(�(y1);�(y2)). It is now easy to verify that
∫

R2


i(x ;�;�)f (x ;�;�)dx = 0; i = 1; 2; ::::

∫

R2


i(x ;�;�)
j(x ;�;�)f (x ;�;�)dx = �i j ; i ; j = 1; 2; ::::

where �i j is the Kronecker delta, and f (x ;�;�) denotes the density function of the bivariate normal

distribution N(�;�). Thus the 
i(x ;�;�), i = 1, 2, ..., form an orthonormal set of polynomials

under the bivariate normal distribution N(�;�). For the bivariate normal density f (x ;�;�), a smooth

alternative of order k , say gk(x; �;�;�), can now be de�ned using the 
i(x ;�;�)'s:

gk(x ; �;�;�) = C(�;�;�) exp
{ k∑

i=1

�i
i(x ;�;�)
}
f (x ;�;�); (5)

where � = (�1; �2; ::::; �k)
0 and C(�;�;�) is a normalizing constant.

The case of di�erent �l�vectors across groups
Let �l = (�l1; �l2; :::; �lkl

)0 be a kl � 1 vector that will be used to de�ne the smooth alternative for the

bivariate data from the lth group. We recall that for l = 1, 2, ...., a, the bivariate data from the lth

group is denoted by Xl j , j = 1, 2, ...., nl . If L denotes the likelihood function for all the groups, then

the log-likelihood function is given by

lnL =

a∑

l=1

[
nl∑

j=1

lnC(�l ;�l ;�l) +

nl∑

j=1

kl∑

i=1

�l i
l j i +

nl∑

j=1

ln f (xl j ;�l ;�l)

]
; (6)

where 
l j i is 
i(x ;�l ;�l) realized at the j th observation in the l th group of the bivariate random vector

X = (X1; X2)
0; i.e., 
l j i = 
i(xl j ;�l ;�l). Let �� be the 3� (a � 1) matrix de�ned as

�� = [�2 �3 � � � �a

]
; (7)

where the �l 's are de�ned in (2). The null hypothesis of bivariate normality and homoscedasticity is

given by

H0 : �l = 0 (l = 1; 2; :::; a); and �l = 0 (l = 2; 3; :::; a): (8)

Recall that the �l 's in (6) are functions of �l , l = 1, 2, ...., a; see (2).

We now derive the score vector and its variance-covariance matrix. For this, let's de�ne M(�l)

similar to M(�) in (4) with � replaced with �l , and let

~M(�l) =




ml1 0 0 0 0

ml2 ml3 0 0 0

0 0 m2
l1 0 0

0 0 m2
l2 m2

l3 ml2ml3

0 0 2ml1ml2 0 ml1ml3




=

(
M(�l) 0

0 M1(�l)

)
; (9)
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where M(�l) and M1(�l) are 2� 2 and 3� 3 principal submatrices of ~M(�l). We note that

@ lnL

@�l r
=

nl∑

j=1


l j r ; l = 1; 2; :::; a; r = 1; 2; :::; k

Furthermore,

@(�l ;�l ) lnL =




@ lnL
@�l1

@ lnL
@�l2

@ lnL
@�l11

@ lnL
@�l22

@ lnL
@�l12




= ~M(�l)

nl∑

j=1




Y1l j
Y2l j

1
2
(Y 2

1l j � 1)
1
2
(Y 2

2l j � 1)

Y1l jY2l j




= ~M(�l)

(
t l1
t l2

)
; (10)

where Y1l j and Y2l j are the components of Yl j = M(�l)
0(Xl j ��l) � N(0; I2), and t l1 and t l2 are 2� 1

and 3� 1 vectors, respectively, given by

t l1 =

nl∑

j=1

(
Y1l j
Y2l j

)
; t l2 =

nl∑

j=1




1
2
(Y 2

1l j � 1)
1
2
(Y 2

2l j � 1)

Y1l jY2l j


 :

It is easily veri�ed that the covariance matrix of
∑nl

j=1

(
Y1l j ; Y2l j ;

1
2
(Y 2

1l j � 1); 1
2
(Y 2

2l j � 1); Y1l jY2l j
)
0

, say
~Il l , is

~Il l = nldiag(I2; 1=2; 1=2; 1): (11)

We now give the expression for the partial derivative of lnL with respect to vec(�). From (9) and

(10), we note that
@ lnL

@vec(�̃)
= ~M1(�̃)(t

0

12; t
0

22; � � � ; t 0a2)0;

where ~M1(�̃) = diag [M1(�1);M1(�2); ::::;M1(�a)], and �̃ is the 3� a matrix de�ned in (2). Then

@ lnL

@vec(�)
=

[
@vec(�̃)

@vec(�)

]
0

@ lnL

@vec(�̃)

=

[
@vec(�̃)

@vec(�)

]
0

(t 012; t
0

22; � � � ; t 0a2)0

= (Q0 
 I3) ~M1(�̃)(t
0

12; t
0

22; � � � ; t 0a2)0: (12)

Note that the score vector for vec(�) is a 3a�1 vector; the �rst 3 elements correspond to �1(3�1),

the next 3 elements correspond to �2(3 � 1), and so on. Thus the components of the score vector

for testing our null hypothesis consist of

@ lnL

@�l r
=

nl∑

j=1


l j r ; l = 1; 2; :::; a; r = 1; 2; :::; kl ;

@ lnL

@�c

=

a∑

l=1

qlcM1(�l)t l2; c = 2; 3; :::; a; (13)

where the second expression given above is obtained from (12).
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Now we derive the elements of the covariance matrix among the scores. It is straightforward to

see that

Cov

(
@ lnL

@�l r
;
@ lnL

@�ls

)
= nl ; for r = s; and = 0 for r 6= s:

Let I�� denote the covariance matrix among @ lnL
@�l r

, l = 1; 2; :::; a; r = 1; 2; :::; kl , and let I�� be similarly

de�ned . Thus

I�� = diag (n1Ik1; n2Ik2; ::::; naIka
) : (14)

In view of (9)�(13) we also have,

I��(3a � 3a) = E
[( @ lnL

@vec(�)

)(
@ lnL

@vec(�)

)
0 ]

= (Q0 
 I3) (Dn 
 fM1(�) diag(1=2; 1=2; 1)M
0

1(�)g) (Q
 I3)

= (Q0DnQ)
 fM1(�)diag(1=2; 1=2; 1)M
0

1(�)g; (15)

where M1(�) denotes the value of M1(�l) in (9) when the �l 's are all equal, having a common value

� (i.e., under the null hypothesis), and

Dn = diag(n1; n2; ::::; na): (16)

Similar to I�� and I��, let I��, I��, I�� and I�� denote variances and covariances among the scores

corresponding to the speci�ed parameters (evaluated under the null hypothesis). We can see that

I�� = 0 and

I��(2a � 2a) = Dn 
 [M(�)M 0(�)]; (17)

where M(�) denotes the value of M(�l) in (9) when the �l 's are all equal.

We next derive I�� and I��. For this, we shall �rst compute covariances among the components of

@(�l ;�l ) lnL in (10) and
∑nl

j=1 
l j r in (13) for r = 1, 2, ...., kl , and for each �xed l = 1, 2, ...., a. Since

@(�l ;�l ) lnL = ~M(�l)

(
t l1
t l2

)
, as noted in (10), where t l1 and t l2 are de�ned below equation (10), we

have to compute the covariances between the components of the 5� 1 vector

(
t l1
t l2

)
and

∑nl

j=1 
l j r ,

and these covariances are free of any unknown parameters. In order to exhibit these covariances, let

us write

Cov

[(
t l1
t l2

)
;

nl∑

j=1


l j r

]
= nlAl = nl

(
A
(1)
l

A
(2)
l

)
; (18)

where Al = ((al i j)) is a 5� kl matrix, and the kl 's can be di�erent, for l = 1, 2, ...., a, and A
(1)
l and

A
(2)
l are the matrices consisting of the �rst two rows and the last three rows of Al , respectively. The

elements of the matrix Al involve the constants ci 's and the ei 's de�ned below:

ci = Cov[bi(�(Z)); Z] =

∫
1

�1

bi(�(z))zf (z)dz;

ei = Cov[bi(�(Z)); Z2] =

∫
1

�1

bi(�(z))z2f (z)dz;

see [2] and [21]. It is easily veri�ed that ci = 0 for i even, and ei = 0 for i odd (this follows from the

expressions for the Legendre polynomials). The values of several non-zero cis and eis are given in [3],

Appendix 6.2, and these are also reproduced in [21], Section 2.1. Since some of the ci 's and ei 's are
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zero, only a few of the al i j 's are non-zeros. The non-zero elements are given below, corresponding to

kl = 20 for all l . The al i j 's do not depend on l , and below we have used the notation ai ;j :

a1;1 = a2;2 = c1; a1;6 = a2;7 = c3; a1;15 = a2;16 = c5;

a3;3 = a4;4 =
1

2
e2; a3;10 = a4;11 =

1

2
e4; a5;5 = c21 ; a5;12 = a5;13 = c1c3:

The above elements correspond respectively to

~
1; ~
2; ~
6; ~
7; ~
15; ~
16;

~
3; ~
4; ~
10; ~
11; ~
5; ~
12; ~
13

of the sequence ~
1; ~
2; :::::; see (3). Thus we get

Cov

(
@(�l ;�l ) lnL;

nl∑

j=1


l j r

)
= nl ~M(�l)Al :

Recall that @vec(�̃)
@vec(�)

= Q0 
 I3. Thus we �nally have

I�;� = diag
(
n1A

(1)
1 ; n2A

(1)
2 ; ::::; naA

(1)
a

)
= (Dn 
 I2)A

(1)

I�;� = (Q0 
 I3)diag
(
n1A

(2)
1 ; n2A

(2)
2 ; ::::; naA

(2)
a

)
= (Q0Dn 
 I3)A

(2); (19)

where A(1) = diag
(
A
(1)
1 ; A

(1)
2 ; ::::; A

(1)
a

)
and A(2) = diag

(
A
(2)
1 ; A

(2)
2 ; ::::; A

(2)
a

)
are 2a � ~k and 3a � ~k

matrices, respectively. The matrices that form the blocks of the covariance matrix of the score vector

are thus given by

I�� = diag (n1Ik1; n2Ik2; ::::; naIka
) ;

I�� = (Q0DnQ)
 fM1(�)diag(1=2; 1=2; 1)M
0

1(�)g
I�� = Dn 
 [M(�)M 0(�)]; I�� = 0

I�;� = (Dn 
 I2)M(�)A(1)

I�;� = (Q0Dn 
 I3)M1(�)A
(2); (20)

where we recall that Dn = diag(n1; n2; ::::; na).

The score statistic can now be constructed, and the associated asymptotic chisquare distribution

has df = ~k + 3(a � 1), where ~k =
∑a

l=1 kl , for kl �xed. The df is simply the number of parameters

involved in the null hypothesis (8). Estimates (MLEs) of �l (l = 1, 2, ...., a) and an estimate of

the common covariance matrix are necessary for computing the score statistic. The former are given

by the sample mean vectors from each group, and the MLE of the common covariance matrix is

obtained by pooling the samples from the a groups. As noted by [21] in the case of the univariate

�xed e�ects model, the test statistic has a distribution that is free of any unknown parameters. Since

the testing problem is invariant under the group of location-scale transformations, this property is to

be expected. Thus the required percentiles can be estimated by Monte Carlo simulation when the

sample sizes are not large enough to appeal to the large sample theory.

45



Assessment of normality and homoscedasticity Yang and Mathew

The case of common �l�vectors across groups
We now de�ne the smooth alternative of order k using a common k � 1 vector � = (�1; �2; ::::; �k)

0

across the di�erent groups. The log likelihood function is now given by

lnL =

a∑

l=1

[
nl∑

j=1

lnC(�;�l ;�l) +

k∑

i=1

nl∑

j=1

�i
l j i +

nl∑

j=1

ln f (xl j ;�l ;�l)

]
; (21)

where 
l j i 's are de�ned as in the previous sub-section. The null hypothesis of bivariate normality and

homoscedasticity is given by

H0 : � = 0 and �l = 0 (l = 2; 3; :::; a): (22)

We shall use the same notations as in the previous sub-section, and the derivation of the score test is

very similar with appropriate modi�cations to take into account the presence of the common ��vector
in the smooth alternative for the di�erent groups. The scores with respect to �=(�1; :::; �k)

0 and �c

(c = 2; 3; :::; a) are

@ lnL

@�r
=

a∑

l=1

nl∑

j=1


l j r ; r = 1; 2; :::; k

@ lnL

@�c

=

a∑

l=1

qlcM1(�l)t l2; c = 2; 3; :::; a; (23)

where the various quantities are de�ned in the previous sub-section. Let Ak be a 5 � k matrix of

constants, similar to the Al matrix de�ned in (18), and let A
(1)
k and A

(2)
k be matrices consisting of the

�rst two rows and the last three rows, respectively, of Ak . The matrices that form the blocks of the

covariance matrix of the score vector are given by:

I�� = NIk

I�� = (Q0DnQ)
 fM1(�) diag(1=2; 1=2; 1)M
0

1(�)g
I�� = Dn 
 [M(�)M 0(�)]; I�� = 0

I�� = (n1; n2; :::; na)
0 
 [M(�)A

(1)
k ]

I�� = (Q0 
 I3)f(n1; n2; :::; na)0 
 [M1(�)A
(2)
k ]g; (24)

where N =
∑a

l=1 nl , and the other quantities are as de�ned in the previous sub-section. The score

statistic can now be computed. For a �xed k , the large sample chisquare distribution associated with

the score statistic now has df = k + 3(a� 1), which is the number of parameters involved in the null

hypothesis (22).

We note that in all the cases of testing bivariate normality and homoscedasticity considered above,

the distribution of the score statistic is free of any unknown parameters. Thus the required percentiles

to carry out the test can be estimated by Monte Carlo simulation. Furthermore, a data driven choice

can be developed for choosing the order of the polynomials in the smooth alternative, similar to what

is noted in [21]. We shall now comment on the data driven choice of the orders. The type I error

probabilities and powers that we have reported in the next section, and the illustrative examples given

later, are all based on tests that use data driven choices of the orders.

In the paper by [2] on smooth tests for bivariate normality, two modi�ed BIC selection rules were

described for choosing the order of the polynomial under Legendre polynomial-based alternatives.
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One choice is based on allowing the order k to vary from 1 to a speci�ed upper bound d(n), and a

second choice is based on allowing k to vary from 5 to d(n). Let k0 denote a speci�ed lower bound

for k . [2] showed that the score statistic for bivariate normality converges in distribution to �2
1 when

k0 = 1, and �2
5 when k0 = 5. Furthermore, the author provided results of a power study that showed

that the test using k0 = 5 is in general much more powerful than the test using k0 = 1. Based on

simulations [2] noted that as a result of the estimation of the �ve unknown parameters (in the mean

vector and covariance matrix), the �rst 5 components of score are very small compared to the rest; as

a consequence, the data driven procedure using k0 = 1 usually does not choose k=2,3,4 or 5, which

explains the di�erence between the powers for the two selection rules.

In the numerical results reported in the next section, and for the examples discussed later, we shall

use data driven choices of the orders based on the guidelines given above.

4 Numerical results

In this section, we shall report estimated type I error probabilities in order to assess the performance

of the di�erent tests. In particular, we shall report estimated type I error probabilities when the tests

are implemented using the large sample chisquare distribution. We note that when the chisquare

distribution is not an accurate approximation for the distribution of the score statistic, the test can

be implemented using estimated percentiles, in view of the fact that the null distribution of the score

statistic is free of any unknown parameters.

For our numerical results, the choice of a (the number of groups), and that of the nls (the

replications), are the same as those used in [21] in the univariate case. Thus we have chosen a

= 3, 6, 9 and 18 groups. Regarding the choice of the nls, we have considered both balanced and

unbalanced data situations, once again following [21]. In the case of balanced data, the nls have a

common value, denoted by n, and the choices considered for the simulation are n = 15, 30, 60, and

90. Before we explain the choice of the nls in the unbalanced case, we want to point out that one of

the possibilities we want to explore in the unbalanced case is to use the critical value corresponding

to the balanced data situation with n replaced by the harmonic mean of the nls. Thus the choices for

the unbalanced case are made as follows. For each value of a, we have chosen the nls in such a way

that their harmonic mean, say ~n, coincides with one of the values of n in the balanced case, namely,

n = 15, 30, 60, and 90. For a = 3, we chose the nls to be 10, 15 and 30, resulting in the harmonic

mean ~n = 15. For a=3, in order to have ~n equal to the other choices of n in the balanced case,

namely, ~n = 30, 60 and 90, we simply multiplied the choices 10, 15 and 30 for the nls with 2, 4 and

6, respectively. The same strategy was adopted for a = 6, 9 and 18. Thus for a = 6, we �rst chose

the nls to be 10, 10, 15, 15, 30, 30, yielding ~n = 15. Such a choice of the nls was then multiplied

by 2, 4 and 6, yielding ~n = 30, 60 and 90, respectively. As already noted, in the unbalanced case we

explored the possibility of using the critical value corresponding to the balanced data situation with

n = ~n for each group.

When we use a Legendre polynomial-based alternative with k0 = 1, the df associated with the

asymptotic chisquare distribution of the score statistic is 1+3(a � 1) = 3a � 2 in the common �l
set up, and the df is a + 3(a � 1) = 4a � 3 in the unequal �l scenario. For the choice k0 = 5, the

corresponding dfs are, respectively, 5 + 3(a � 1) = 3a + 2 and 5a + 3(a � 1) = 8a � 3. Throughout,

we have implemented the data driven approach with d(n) = 15. Without loss of generality, we have

chosen �l = 0 for each l . Furthermore, when homoscedasticity holds, we have assumed that the

common value of the covariance matrices is the identity matrix. Throughout, we have used 104

simulations, and a 5% signi�cance level. Note that we have a total of four scenarios for evaluating

the type I error probabilities: smooth alternatives with common �l or di�erent �l , with k0 = 1 and
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P (Type I error) 95th Percentile P (Type I

a n df �2
(df;0:95) Balanced Unbalanced Balanced Unbalanced error*)

3 15 7 14.067 0.048 0.049 13.975 13.975 0.050

3 30 7 14.067 0.047 0.043 13.931 13.712 0.045

3 60 7 14.067 0.049 0.049 14.015 14.010 0.050

3 90 7 14.067 0.049 0.050 14.009 14.067 0.051

6 15 16 26.296 0.060 0.063 27.020 27.347 0.054

6 30 16 26.296 0.058 0.056 26.888 26.771 0.049

6 60 16 26.296 0.055 0.056 26.656 26.716 0.051

6 90 16 26.296 0.053 0.053 26.596 26.502 0.049

9 15 25 37.652 0.078 0.073 40.038 39.836 0.048

9 30 25 37.652 0.065 0.059 38.893 38.560 0.047

9 60 25 37.652 0.059 0.057 38.319 38.150 0.048

9 90 25 37.652 0.055 0.054 38.075 38.029 0.050

18 15 52 69.832 0.101 0.089 75.231 73.666 0.041

18 30 52 69.832 0.075 0.068 72.323 72.173 0.049

18 60 52 69.832 0.065 0.057 71.562 70.696 0.043

18 90 52 69.832 0.058 0.055 70.718 70.363 0.048

Table 1: Type I error probabilities of the score tests and critical values of the score statistics under smooth

alternatives with a common �l when k0=1 and a 5% signi�cance level; �2
(df;0:95) denotes the 95th percentile of the

chisquare distribution with the speci�ed df.

k0 = 5 in each case. Table 1� Table 4 give the following numerical results: (i) the estimated type

I error probabilities in the balanced and unbalanced data situations when the asymptotic chi-square

distribution is used to carry out the test (these results appear under �P(Type I error)" in the tables), (ii)

the 95th percentiles of the test statistics estimated by Monte Carlo simulation, and (iii) the estimated

type I error probabilities in the unbalanced case when the estimated percentile for the balanced case

is used with n = ~n (these results appear under �P(Type I error�)" in the tables). In the tables, the

type I error probabilities in the unbalanced case are reported against a single value of n. As already

noted, this value of n is actually the harmonic mean (denoted by ~n) of the nls that have been chosen

in the unbalanced case.

From the numerical results in Table 1� Table 4 we draw the following conclusions. The asymptotic

chisquare approximation can be very poor, especially when the number of groups is large and the within-

group replication is small. This is clear from several of the estimated type I error probabilities, and is

also evident from the discrepancy between the chi-square percentile and the corresponding percentile

estimated by Monte Carlo simulation. In such scenarios, the test should be implemented using the

critical value estimated using Monte Carlo simulation. Interestingly, the use of the estimated critical

value corresponding to ~n in the balanced case turns out to be quite accurate in the unbalanced case,

at least in the scenarios considered for simulation.

5 Two examples

In order to illustrate the tests we have developed, we shall use two examples.

Example 1

In this example, measurements are available on male Egyptian skulls from 5 epochs: 4000BC, 3300BC,

1850BC, 200BC, and AD150. Thirty skulls were measured from each time period, resulting in a total

48



Gujarat Journal of Statistics and Data Science Vol. 38, pp. 39�53, 2022

P (Type I error) 95th Percentile P (Type I

a n df �2
(df;0:95) Balanced Unbalanced Balanced Unbalanced error*)

3 15 11 19.675 0.062 0.061 20.575 20.527 0.050

3 30 11 19.675 0.053 0.052 19.911 19.826 0.049

3 60 11 19.675 0.053 0.053 19.893 19.877 0.050

3 90 11 19.675 0.054 0.051 19.950 19.785 0.048

6 15 20 31.410 0.067 0.068 32.815 32.886 0.051

6 30 20 31.410 0.061 0.059 32.216 32.297 0.051

6 60 20 31.410 0.057 0.057 31.897 32.004 0.052

6 90 20 31.410 0.056 0.055 31.882 31.886 0.050

9 15 29 42.557 0.085 0.075 45.740 44.982 0.043

9 30 29 42.557 0.064 0.061 43.969 43.466 0.046

9 60 29 42.557 0.060 0.057 43.525 43.258 0.047

9 90 29 42.557 0.056 0.057 43.060 43.277 0.052

18 15 56 74.468 0.101 0.090 80.103 78.783 0.042

18 30 56 74.468 0.076 0.072 77.381 77.149 0.047

18 60 56 74.468 0.065 0.059 76.097 75.659 0.047

18 90 56 74.468 0.058 0.057 75.459 75.234 0.049

Table 2: Type I error probabilities of the score tests and critical values of the score statistics under smooth

alternatives with a common �l when k0=5 and a 5% signi�cance level; �2
(df;0:95) denotes the 95th percentile of the

chisquare distribution with the speci�ed df.

P (Type I error) 95th Percentile P (Type I

a n df �2
(df;0:95) Balanced Unbalanced Balanced Unbalanced error*)

3 15 9 16.919 0.072 0.083 18.644 19.715 0.061

3 30 9 16.919 0.053 0.054 17.232 17.183 0.049

3 60 9 16.919 0.049 0.050 16.873 16.897 0.051

3 90 9 16.919 0.053 0.054 17.112 17.144 0.051

6 15 21 32.671 0.111 0.119 38.955 40.034 0.057

6 30 21 32.671 0.070 0.071 34.373 34.777 0.053

6 60 21 32.671 0.060 0.064 33.363 33.856 0.056

6 90 21 32.671 0.055 0.058 33.181 33.198 0.050

9 15 33 47.400 0.150 0.151 58.492 60.914 0.060

9 30 33 47.400 0.084 0.082 51.207 50.686 0.047

9 60 33 47.400 0.066 0.065 48.925 49.012 0.051

9 90 33 47.400 0.061 0.061 48.436 48.326 0.049

18 15 69 89.391 0.221 0.211 113.772 114.292 0.052

18 30 69 89.391 0.108 0.105 96.663 97.141 0.054

18 60 69 89.391 0.078 0.071 93.075 92.142 0.045

18 90 69 89.391 0.067 0.062 91.603 91.065 0.047

Table 3: Type I error probabilities of the score tests and critical values of the score statistics under smooth

alternatives with di�erent �ls when k0=1 and a 5% signi�cance level; �2
(df;0:95) denotes the 95th percentile of the

chisquare distribution with the speci�ed df.
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P (Type I error) 95th Percentile P (Type I

a n df �2
(df;0:95) Balanced Unbalanced Balanced Unbalanced error*)

3 15 21 32.671 0.112 0.114 39.189 39.446 0.052

3 30 21 32.671 0.080 0.081 35.481 35.531 0.051

3 60 21 32.671 0.066 0.071 34.268 34.489 0.052

3 90 21 32.671 0.066 0.066 34.209 34.117 0.050

6 15 45 61.656 0.158 0.147 73.450 74.349 0.054

6 30 45 61.656 0.106 0.102 68.560 68.024 0.047

6 60 45 61.656 0.085 0.086 65.268 65.891 0.054

6 90 45 61.656 0.078 0.075 65.047 64.531 0.046

9 15 69 89.391 0.195 0.178 107.889 108.431 0.052

9 30 69 89.391 0.124 0.121 98.986 98.403 0.048

9 60 69 89.391 0.092 0.091 95.538 95.000 0.047

9 90 69 89.391 0.076 0.081 93.077 93.332 0.052

18 15 141 169.711 0.273 0.248 205.796 203.253 0.044

18 30 141 169.711 0.154 0.148 187.207 186.519 0.047

18 60 141 169.711 0.107 0.099 179.333 177.904 0.045

18 90 141 169.711 0.088 0.083 175.911 176.244 0.051

Table 4: Type I error probabilities of the score tests and critical values of the score statistics under smooth

alternatives with di�erent �ls when k0=5 and a 5% signi�cance level; �2
(df;0:95) denotes the 95th percentile of the

chisquare distribution with the speci�ed df.

of 150 observations. Measurements were obtained on the following �ve variables:

EPOCH: Approximate Year of Skull Formation

MB: Maximal Breadth of Skull

BH: Basi-bregmatic Height of Skull

BL: Basialveolar Length of Skull

NH: Nasal Height of Skull

The data set is available in the R library �HSAUR", and was originally given in [4]. The main

problem of interest was whether the measurements changed over time. Non-constant measurements

of the skulls over time would indicate interbreeding with immigrant populations. Our interest is to

test the validity of the normality and homoscedasticity assumptions.

Since the methodology we have developed is for bivariate data, we shall carry out our test

procedures using the data on just two variables. We shall use the data on the pair of variables

MB and BH for illustration. Thus we have balanced data with a = 5 groups, and n = 30 bivariate

observations per group. The results of our analysis are presented in Table 5. We have used a data

driven choice for the value of the order k , and this choice is also given in the table. In the case of

di�erent �l 's across the �ve groups, the table gives the values of the data driven choice of the kl 's for

the di�erent groups. While implementing the data driven choice, we varied k between speci�ed lower

and upper limits k0 and d(n) respectively; the choice of k0 is given in the table, and d(n) was chosen

to be 15. The simulated critical value of the score statistic is given in each case, along with the

value of the score statistic. A few of the score statistics are also presented as the sum of two terms:

the �rst term corresponds to the score statistic for testing bivariate normality (i.e., �l = 0) and the

second term corresponds to testing homoscedasticity. For example, in the case of a common � across

the �ve groups, the value of the score statistic is presented as 15.563 (5.042+10.520). The value
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Data Estimated

driven k critical value Score statistic Decision on H0

Common �l , k0=5 5 28.244 15.563 (5.042+10.520) Don't Reject

Common �l , k0=1 1 22.956 10.588 (0.068+10.520) Don't Reject

Di�erent �l , k0=5 5,5,6,5,5 58.008 44.190 Don't Reject

Di�erent �l , k0=1 1,1,1,1,1 28.717 13.780 Don't Reject

Table 5: Bivariate normality and homoscedasticity test for Example 1 using a 5% signi�cance level (Variables:

maximal breadth and basibregmatic height)

Data Estimated

driven k critical value Score statistic Decision on H0

Common �l , k0=5 5 19.911 35.114 (11.904+23.21) Reject

Common �l , k0=1 1 13.931 24.999 (1.789+23.21) Reject

Di�erent �l , k0=5 10,6,5 35.481 52.884 Reject

Di�erent �l , k0=1 1,1,3 17.232 33.436 Reject

Table 6: Bivariate normality and homoscedasticity test for Example 2 using a 5% signi�cance level (Variables:

Insulin Resistance and Relative Weight)

5.042 corresponds to the score statistic for testing bivariate normality, and the second value 10.520

corresponds to the score statistic for testing homoscedasticity. Such a decomposition is possible here

since the covariance matrix of the score statistic is a block diagonal matrix. It can be veri�ed that

the estimated critical values given in Table 5 are all very close to the 95th percentiles of the chisquare

distributions with the appropriate dfs. The decision concerning the null hypothesis is indicated in

Table 5.

In this example, all tests failed to reject, and there is no evidence of either non-normality or

heteroscedasticity. It should be noted that evidence of multivariate normality was indicated in the

original data source, and our analysis agrees with this.

Example 2

Our second example is based on a data set taken from [19], who investigated the e�ect of several

variables on chemical diabetes and overt diabetes. The data set is reproduced in [1] and in [20]. There

were 90 subjects in the study, belonging to three groups: normal, those with chemical diabetes, and

those with overt diabetes. Each group had 30 subjects. For each of the 90 subjects, data were

obtained on the variables glucose intolerance, insulin response to oral glucose and insulin resistance,

along with relative weight and fasting plasma glucose. For more details, we refer to [19].

We shall illustrate our tests using data on one pairs of variables: Insulin Resistance and Relative

Weight. The results of the tests are presented in Table 6. We note that all the tests result in rejection

of the null hypothesis. Looking at the individual components of the score statistics, it appears that

the rejection is mainly caused by heteroscedasticity.

6 Discussion

This article develops score tests for the simultaneous assessment of normality and homoscedasticity for

bivariate grouped data based on a class of smooth alternatives de�ned through Legendre polynomials.

In our work we have considered two scenarios for the smooth alternatives: one option that speci�es a
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common non-normal distribution for the di�erent groups, and a second option that speci�es di�erent

non-normal distributions for the di�erent groups. In a practical application, the experimenter/data

analyst has to decide which alternative is appropriate.

Even though we have considered only Legendre polynomial based smooth alternatives, one can also

specify smooth alternatives based on Hermite polynomials; see [18] where smooth alternatives based

on Hermite polynomials are used for testing normality. In the doctoral dissertation by [20], smooth

tests are derived for simultaneously testing normality and homoscedasticity when the alternative is

speci�ed using both Legendre polynomials and Hermite polynomials. The numerical results in [20]

indicate that for certain alternatives, smooth tests derived using Hermite polynomials have lower

power compared to the tests derived under Legendre polynomial based smooth alternatives. This has

also been noted in [2] for testing bivariate normality against smooth alternatives. Thus, in the present

work, we have not included tests based on Hermite polynomial-based alternatives. We have provided

details concerning the numerical implementation of our proposed tests, and have also illustrated them

using two examples.
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Abstract

In a heteroscedastic one-way ANOVA model, a heuristic Max-T test is proposed for testing the null hypothesis

of equality of treatment e�ects, that is, H0 : �1 = �2 = � � � = �k against the alternative hypothesis of

ordered e�ects; H1 : �1 � �2 � � � � � �k (with at least one strict inequality). Asymptotic distribution of

Max-T test statistic is derived and another test, called asymptotic Max-T(AMax-T) is proposed, based on the

asymptotic distribution. Parametric bootstrap is used for the tests based on Max-T and AMax-T statistics to

evaluate critical points and estimate the size and power functions. Simulation studies show that both Max-T

and AMax-T tests achieve size. Powers of Max-T and AMax-T tests are observed to be almost the same.

Under the departure from normality, the robustness of both the tests is studied by �nding powers and sizes

for �ve non-normal distributions (Laplace, exponential, Weibull, log-normal and t-distribution). It is observed

that the tests are more robust for large sample sizes. For the proposed tests R packages are developed, which

makes our tests user friendly in real situations. A practical example is provided to illustrate the application of

these tests.

Keywords: ANOVA; heteroscedasticity; power; critical points; robustness.

1 Introduction

Traditional one-way ANOVA considers testing equality of treatment e�ects against an alternative

hypothesis of at least one inequality with homogeneous error variances. However, in certain situa-

tions, it is more sensible to have an alternative hypothesis in which mean treatment e�ects have a

natural ordering. Such applications arise in dose response trials, environmental studies, agricultural

and industrial experiments (see for example, Bretz [6], Chen [8], Shan et al. [22] or Williams [28]).

We can design more powerful tests for such ordered alternatives.

Speci�cally we are interested in testing the equality of treatment e�ects, H0 : �1 = �2 = � � � = �k

against an ordered alternative hypothesis, H1 : �1 � �2 � � � � � �k , with at least one strict inequality,

where �i is the i-th treatment e�ect for i = 1; 2; � � � ; k . There are many studies where ordered alter-

natives are considered. However, group variances are taken to be either homogeneous and unknown

or heterogeneous and known. Bartholomew [1] derived the likelihood ratio test for testing H0 against

H1 when variances are known. Shorack [24] extended Bartholomew's test to two-way ANOVA and

general linear models and also proposed a rank analogue of these.

William [28] developed a test for testing against M0 � M1 � � � � � Mk with at least one strict inequal-

ity that uses maximum likelihood estimators of mean responses of k treatments Mi ; i = 1; 2; � � � ; k

© 2022 Author(s). (https://www.thegsa.in/).
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and controlM0. He considered equal but unknown variances and equal treatment replications. William

[29] modi�ed the test of [28] for unequal treatment replications. Marcus [16] carried out the power

comparisons of Bartholomew's tests [1], [2] and William's tests [28], [29] by �nding exact powers for

k = 3 and simulated powers for k = 4; 6 and 8.

Further, Mudholkar and McDermott [17] proposed a class of tests by combining p-values for testing

equality of treatment e�ects against di�erent types of order restricted hypotheses. They have taken

equal and known variance. Sirley [23] proposed non-parametric versions of Williams' tests [28] and

[29]. Moreover, Bretz [6] extended William's tests [28] and [29] for general linear models, which allow

for covariates and factorial treatments. Cabiolio and Peng [7] extended Jonckheere's [14] test for

testing equality of treatment e�ects against ordered alternatives in a randomized block experiment

with incomplete blocks.

In all the above studies, the error variances are considered equal or unequal but known. However,

the homogeneous variance or known variance conditions are not suitable in many practical situations

(see, for example, Bishop and Dudewicz [4], [5], Chen [8], [9], Noguchi et al. [18] or Pauly et al. [20,

19]).

Under the condition of heteroscedastic and unknown variances, Bishop and Dudewicz [4] proposed

one-stage and two-stage procedures for one-way and two-way ANOVA models, and Bishop and

Dudewicz [5] extended those for the r -way ANOVA model. Hasler [11] proposed multiple contrast

tests using multiple degrees of freedom and sandwich estimation procedure for testing equality of

means in heteroscedastic ANOVA. Chen [8] proposed one stage and two stage procedures for testing

H0 against natural alternatives in one-way ANOVA with unequal and unknown variances. Herberich

et al. [12] proposed a test based on multiple comparison procedures for testing equality of treatment

e�ects in heteroscedastic one-way ANOVA model with unequal sample sizes. All these works consider

the hypothesis of at least one inequality against equality of mean e�ects.

Krishnamoorthy et al. [15] proposed a parametric bootstrap test for �xed e�ects one-way ANOVA

model with heteroscedastic error variances. They compared this test with the existing tests; Welch's

test [27], James's test [13] and generalized F(GF) test [26]. From their simulation studies, it is ob-

served that the parametric bootstrap test performs better than others. They noted that the proposed

test is also applicable in the random-e�ects one-way ANOVA model with heteroscedastic variances.

In one-way ANOVA model when variances are unequal and data are unbalanced, Zhang [30] consid-

ered multiple comparisons H0 : �i = �j vs. H� : �i 6= �j , i ; j = 1; 2; � � � ; k; i 6= j . He proposed a

parametric bootstrap test modifying Tukey's range test.

In this paper, we consider the extension of One-Way ANOVA in two directions: testing against ordered

alternatives and unknown and unequal variances. Precisely, we consider testing equality of treatment

e�ects i.e., H0 : �1 = �2 = � � � = �k , against ordered alternatives H1 : �1 � �2 � � � � � �k with at

least one inequality. We also consider unequal replications of k treatments. For the testing problem,

we propose a simultaneous test based on pair- wise comparisons among treatment e�ects, called the

Max-T test. Under the null hypothesis, the asymptotic distribution of the Max-T test statistic is de-

rived, and another test, the asymptotic Max-T (AMax-T) test, is proposed. For practical usefulness,

the parametric bootstrap approach for both Max-T and AMax-T is used. From extensive simulation

studies, it is observed that both the tests perform well when all the treatment e�ects are in strictly
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increasing order or increasing order with at least one equality. As AMax-T is an asymptotic test, it

achieves the required size for moderate to large sample sizes. But Max-T performs well for small

samples also. R packages are developed for applying the tests in real-life situations.

The article is organized as follows. In Section 2, we introduce the Max-T test. An algorithm for �nding

critical values using a parametric bootstrap approach for this test is given. Asymptotic distribution

of the Max-T test statistic is derived in Section 3, and a test based on the asymptotic distribution

is introduced there. The parametric bootstrap approach is used to �nd the critical value of the

asymptotic Max-T test. The corresponding algorithm is given in Section 3. Asymptotic accuracy of

parametric bootstrap of Max-T is also established. The proof also establishes the accuracy of the

parametric bootstrap of AMax-T test. An algorithm for �nding the size and power of the tests is

provided in Section 4, and the simulated results are tabulated and analyzed there. In Section 5, we

study the robustness of the proposed Max-T and AMax-T tests, by calculating size and power of �ve

non-normal distributions. The proposed methods are applied to a real data set in Section 6.

2 Max-T test

Consider the �xed e�ect one-way ANOVA model:

Xi j = �i + �i j ; j = 1; 2; � � � ; ni ; i = 1; 2; � � � ; k;

where the errors �i j 's are independent and normally distributed, say N(0; �2i ), and the variances

�2i are unknown and unequal. We are interested in testing H0 : �1 = �2 = � � � = �k against

H1 : �1 � �2 � � � � � �k with at least one strict inequality.

De�ne

Ti =
�Xi+1: � �Xi :√

S2
i+1

ni+1
+

S2
i

ni

; i = 1; 2; � � � ; k � 1 (1)

where �Xi : =
1
ni

ni∑
j=1

Xi j and S2
i = 1

ni�1
ni∑
j=1

(Xi j � �Xi :)
2 are the sample mean and the sample variance

respectively of the ith sample for i = 1; 2; � � � ; k .

We propose the test statistic for H0 against H1 as

TM = maxT; (2)

where T = (T1; T2; � � � ; Tk�1)T : The hypothesis H0 is rejected at level � if TM > d such that

supH0
P (TM > d) = �: As the distribution of the test statistic TM under H0 is complicated, we use

parametric bootstrap (PB) for �nding critical values. In PB, samples are generated from parametric

models using estimators of parameters in place of original parameters. We introduce PB version of

Max-T statistic below.

Note that under H0, �i 's are equal, say, �. The statistic (1) is independent of �, so without loss of

generality, we can take � = 0. Now, we generate bootstrap samples X�
i j from N(0; S2

i ). De�ne

T �
i =

�X�
i+1 � �X�

i√
S�2

i+1

ni+1
+

S�2
i

ni

; i = 1; 2; � � � ; k � 1; (3)
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where �X�
i = 1

ni

ni∑
j=1

X�
i j and S�2i = 1

ni�1
ni∑
j=1

(X�
i j � �X�

i :)
2 are the sample mean and the sample variance of

the bootstrap sample X�
i j ; j = 1; 2; � � � ; ni ; i = 1; 2; � � � ; k: PB version of TM is de�ned as follows

T �
M = maxT�; (4)

where T� = (T �
1 ; T

�
2 ; � � � ; T �

k�1)
T :

H0 is rejected at level � if TM > d�, where the critical value d� is obtained from the following algorithm.

Algorithm 1.

1. From given k independent normally distributed heteroscedastic samples Xi j ; j = 1; 2; � � � ; ni ; i =
1; 2; � � � ; k , calculate sample variances S2

i for i = 1; 2; � � � ; k .
2. Generate parametric bootstrap samples X�

i j from N(0; S2
i ), j = 1; 2; � � � ; ni ; i = 1; 2; � � � ; k .

3. Calculate the values of T �
i for i = 1; 2; � � � ; k � 1 as de�ned in Equation (3). Then calculate

the observed statistic value of T �
M, de�ned in Equation (4).

4. Repeat Steps 2 and 3 a large number of times, say H = 5000. Rearrange the H values of T �
M

in increasing order, say T �
M(1) � T �

M(2) � � � � � T �
M(H) and take (1� �)-th quantile as bootstrap

critical value, say d�,
d� := T �

M([(1��)H]);

TM(h) is the h-th order statistic of H values of TM.

3 Asymptotic Max-T test

In this section, we de�ne asymptotic Max-T test (AMax-T), which is based on the asymptotic distri-

bution of Max-T test. First we �nd the asymptotic distribution of the statistic T under H0.

Consider the asymptotic setup

ni

N
! ri as min

1�i�k
ni !1 and N !1; i = 1; 2; � � � ; k; N =

k∑

i=1

ni : (5)

We rewrite Ti as

Ti =
Zi

b̂i
;

where Zi =
√

nini+1

N
( �Xi+1: � �Xi :) and b̂i =

√
ni

N
S2
i+1 +

ni+1

N
S2
i :

As samples variances S2
i

P�! �2i as ni !1 for i = 1; 2; � � � ; k , we get

b̂i
P�!
√
ri�

2
i+1 + ri+1�

2
i = bi(say):
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When the null hypothesis H0 holds true, under the asymptotic set up (5), the distribution of

Z = (Z1; Z2; � � � ; Zk�1)T is Nk�1(0;�z), with �z given by

�z =




b21 e1 0 : : : 0 0

e1 b22 e2 : : : 0 0

0 e2 b23 : : : 0 0
...

...
...

. . .
...

...

0 0 0 : : : ek�2 b2k�1




and ei = �pri ri+2�2i+1:

Let B̂ = diag
(
b̂1; b̂2; � � � ; b̂k�1

)
and B = diag (b1; b2; � � � ; bk�1). Then under (5), B̂

P�! B. Hence

under H0, the asymptotic distribution of T = B̂�1Z is Nk�1(0;D) using multivariate Slutsky's theorem

and continuous mapping theorem, where D = B�1�zB
�1:

From the asymptotic distribution of the vector T we de�ne an asymptotic test, called AMax-T. The

test rejects H0 if TM > f �, where f � can be found from the following algorithm.

Algorithm 2.

1. From a given sample Xi j ; j = 1; � � � ; ni ; i = 1; � � � ; k , which are independent, normally

distributed with heterogeneous variances generate sample variances S2
i , i = 1; 2; � � � ; k:

2. Compute estimator of matrix �z, say, �̂z using S2
1; S

2
2; � � � ; S2

k in place of �21; �
2
2;� � � ; �2k .

Similarly calculate B̂ from B by replacing �21; �
2
2; � � � ; �2k . Then calculate D̂ = B̂�1�̂zB̂

�1:

3. Generate T̂
�
A from Nk�1(0; D̂). Now take the estimated test statistic value T̂ �

AM = max T̂�A.

4. Repeat Step 3 a large number of times, say H = 5000. Now, you have H number of T̂ �
AM

values. Rearrange them in increasing order, say, T̂ �
AM(1); T̂

�
AM(2); � � � ; T̂ �

AM(H): Then take (1��)-

th quantile as an critical value, say f �,

f � := T̂ �
AM([(1��)H]):

In the next theorem, it is shown that the asymptotic conditional distribution of the bootstrap statistic

T
� given the sample X = (X11; X12; � � � ; Xknk

) is the same as the asymptotic null distribution of T:

Theorem 3.1. The asymptotic distribution of T� given X is Nk�1(0;D):

Proof. De�ne

Z�
i =

√
nini+1

N
( �X�

i+1: � �X�
i :)

and

b̂�2i =
ni

N
S�2i+1 +

ni+1

N
S�2i ; i = 1; 2; � � � ; k � 1:

It can be easily shown that,

E�(Z
�
i ) = 0; V ar�(Z

�
i ) = b̂2i ; i = 1; 2; � � � ; k � 1
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and

Cov�(Z
�
i ; Z

�
i+1) = �pri ri+2S2

i+1 = êi(say); i = 1; 2; � � � ; k � 2;

where E�, V ar� and Cov� denotes the conditional expectation, variance and covariance respectively.

Therefore, given observations X = (X11; X12; � � � ; Xknk
), the conditional distribution of Z� =

(Z�
1; Z

�
2; � � � ; Z�

k�1)
T is Nk�1(0;��

z), where

�
�
z =




b̂21 ê1 0 : : : 0 0

ê1 b̂22 ê2 : : : 0 0

0 ê2 b̂23 : : : 0 0
...

...
...

. . .
...

...

0 0 0 : : : êk�2 b̂2k�1



:

By asymptotic set up (5)

�
�
z

P�! �z: (6)

Let B� = diag
(
b̂�1; b̂

�
2; � � � ; b̂�k�1

)
:

By Bickel and Freedman [3], given the observations X, S�2i
P�! �2i in conditional probability, as ni !1

for i = 1; 2; � � � ; k:
Hence by asymptotic set up (5)

B
� P�! B as N; min

1�i�k
ni !1: (7)

Therefore, by Equations (6), (7), multivariate Slutsky's theorem and continuous mapping theorem,

the conditional distribution of T� = B��1Z� converges to the distribution of Nk�1(0;D) as

N;min1�i�k ni !1.

In the following theorem, the asymptotic accuracy of the parametric bootstrap test T� is established.

Theorem 3.2. Let FT�jX(t) denote the conditional distribution function of T� given the observations

X and FTjH0
(t) denote the null distribution function of T. Then under the asymptotic set up (5),

sup
t2Rk�1

jFT�jX(t)� FTjH0
(t)j P�! 0:

Proof. Under H0, Xi j � N(�; �2i ); j = 1; 2; � � � ; ni ; i = 1; 2; � � � ; k:
Without loss of generality, we can choose � = 0.

Hence under H0,

U =
(p

N �X1:;
p
N �X2:; � � � ;

p
N �Xk:

)T
� Nk(0;�1)

and given X conditionally

U
� =

(p
N �X�

1:;
p
N �X�

2:; � � � ;
p
N �X�

k:

)T
� Nk(0;�2)

where �1 = diag
(
N�2

1

n1
;
N�2

2

n2
; � � � ; N�2k

nk

)
and �2 = diag

(
NS2

1

n1
;
NS2

2

n2
; � � � ; NS2k

nk

)
:

Therefore, Kullback-Leibler divergence of U� from U is

DKL(U
� jj U) = 1

2

[
k∑

i=1

S2
i

�2i
� k +

k∑

i=1

log

(
�2i
S2
i

)]
P�! 0 as min

1�i�k
ni !1: (8)
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Let

Y = (Y1; Y2; � � � ; Yk�1)T = AU;

where

A =




�1 1 0 : : : 0 0

0 �1 1 : : : 0 0
...

...
...

. . .
...

...

0 0 0 : : : �1 1


 ;

Yi =
p
N
(
�Xi+1: � �Xi :

)
; i = 1; 2; � � � ; k � 1.

We also consider

Y
� =

(
Y �
1 ; Y

�
2 ; � � � ; Y �

k�1
)T

= AU�;

where Y �
i =

p
N
(
�Y �
i+1: � �Y �

i :

)
; i = 1; 2; � � � ; k � 1.

By Equation (8), DKL(Y
� jj Y) P�! 0 as min1�i�k ni !1:

This implies

sup
y

jFY�jX(y)� FYjH0
(y)j P�! 0: (9)

Next write T = R̂Y and T
� = R̂�Y�, where R̂ = diag

(p
n1n2
N

1
b̂1
; � � � ;

p
nk�1nk

N
1

b̂k�1

)
and R̂� =

diag
(p

n1n2
N

1
b̂�
1

; � � � ;
p
nk�1nk

N
1

b̂�
k�1

)
.

Then under (5), R̂
P�! R and R̂�

P�! R; where R = diag
(p

r1r2
b1

; � � � ;
p
rk�1rk

bk�1

)
: Now multivariate Slutsky

theorem and Equation (9) yield the result.

4 Size and power studies

In this section simulation studies are carried out to analyze the size and power behaviour of the two

tests, Max-T and AMax-T. The critical points have been calculated using parametric bootstrap as

described in Algorithms 1 and 2. Sizes of Max-T and AMax-T tests are estimated using the following

algorithm:

Algorithm 3.

1. Fix a con�guration of �, (�21; �
2
2; � � � ; �2k) and (n1; n2; � � � ; nk).

2. Generate k number of samples of size ni , Xi1; Xi2; � � � ; Xini
from N(�; �2i ) for i = 1; 2; � � � ; k:

3. Using the observations from Step 2 calculate Max-T critical value d� and AMax-T critical value

f � using Algorithms 1 and 2 respectively.

4. Using the data from Step 2 calculate test statistic value TM.

5. Repeat Steps 2-4 a large number of times, say B = 10; 000: Now, we have B number of values

of the test statistic TM, say TMr
, r = 1; 2; � � � ; B, B number of critical values of Max-T, say

d�r ; r = 1; 2; � � � ; B and B number of critical values of AMax-T, say f �r ; r = 1; 2; � � � ; B:
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6. Finally estimates of sizes of Max-T and AMax-T are:

�MT =
number of times TMr

more than d�r
B

=
1

B

B∑

r=1

1fTMr
> d�r g

and

�AMT =
number of times TMr

more than f �r
B

=
1

B

B∑

r=1

1fTMr
> f �r g

respectively.

Powers of the tests are also calculated using the above algorithm by �xing con�gurations of

(�1; �2; � � � ; �k) in Step 1 as �1 � �2 � � � � � �k with at least one strict inequality.

For all the simulation studies, we have taken the nominal size as � = 0:05. The outcomes of simula-

tion studies are observed to be similar for nominal size � = 0:1. When the number of groups is 4 or 5,

the sizes of tests are calculated for various combinations of sample sizes and variances. For k = 4 and

k = 5, size values are given in Tables 1 and 2 respectively. For k = 4, four di�erent combinations of

sample sizes and seven combinations of values of variances are chosen. The sample sizes are denoted

by: N1 = (10; 15; 15; 20), N2 = (10; 30; 40; 10), N3 = (30; 40; 50; 60) and N4 = (70; 80; 60; 70).

The variance con�gurations are (0:1; 0:2; 0:3; 0:4), (1; 1; 1; 1), (1; 1; 1; 0:5), (1; 1; 1; 2), (1; 1; 1; 3)

(1; 2; 1; 3), (3; 2; 1; 1).

In Table 2, for k = 5, four combinations of sample sizes and eight combinations of values

of variances are chosen. The sample sizes are denoted by: N5 = (15; 10; 8; 10; 10), N6 =

(10; 20; 20; 30; 20), N7 = (30; 40; 40; 40; 50) and N8 = (50; 60; 70; 40; 50). The variance con-

�gurations are (0:1; 0:2; 0:3; 0:4; 0:5), (1; 1; 1; 1; 1), (1; 2; 2; 3; 4), (1; 1; 1; 1; 0:5), (1; 1; 1; 1; 2),

(1; 1; 1; 1; 3), (1; 2; 3; 1; 1), (3; 2; 1; 1; 1). Note that sample sizes are chosen as small, moderate,

large and unbalanced. Similarly variances con�gurations are chosen as equal, unequal, small, or mod-

erate.

Powers of Max-T and AMax-T are tabulated in Tables 3, 4, 5 and 6 for di�erent combinations of

parameters and sample sizes. Results for k = 3 are given in Tables 3 and 4. In both the tables

two combination of variances are taken: equal (1,1,1) and variances (1,2,3). Sample sizes taken are

moderate: N9 = (20; 30; 25) and large: N10 = (60; 70; 50). In Table 3, �1; �2; �3 are taken to be in

strictly increasing order, say (�1; �2; �3) = c(1; 1:1; 1:2), where c ranges from 1 to 5 with increment

0.2. The choice c = 0 gives the size value. In Table 4, two group means are taken to be equal and

other unequal, that is, (�1; �2; �3) = c(1; 1; 1:5).

In Tables 5 and 6, powers and sizes are tabulated for k = 4: In Table 5, we take group means to

be strictly ordered: (�1; �2; �3; �4) = c(1; 1:1; 1:2; 1:3), equal variances: (1; 1; 1; 1) and unequal

variances: (1; 2; 3; 4), moderate sample sizes: N11 = (20; 25; 30; 20) and large sample sizes:

N12 = (40; 60; 50; 70). In Table 6, powers are given for monotonically increasing group means with

two equal components, say (�1; �2; �3; �4) = c(1; 1:2; 1:2; 1:5). Another variance con�guration

(1; 1; 3; 4) is chosen here, all other con�gurations are the same as in Table 5.
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Table 1: Estimated sizes of Max-T and AMax-T tests for k = 4 and nominal size 0.05

N1 N2 N3 N4

�2 Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

(0.1, 0.2, 0.3, 0.4) 0.0550 0.0608 0.0520 0.0734 0.0496 0.0562 0.0550 0.0582

(1, 1, 1, 1) 0.0510 0.0712 0.0568 0.0740 0.0544 0.0490 0.0558 0.0544

(1, 1, 1, 0.5) 0.0506 0.0720 0.0508 0.0618 0.0532 0.0556 0.0532 0.0560

(1, 1, 1, 2) 0.0490 0.0732 0.0552 0.0686 0.0492 0.0572 0.0532 0.0604

(1, 1, 1, 3) 0.0550 0.0702 0.0494 0.0734 0.0568 0.0602 0.0528 0.0576

(1, 2, 1, 3) 0.0504 0.0724 0.0524 0.0660 0.0582 0.0534 0.0516 0.0504

(3, 2, 1, 1) 0.0478 0.0666 0.0522 0.0670 0.0598 0.0600 0.0540 0.0492

Table 2: Estimated sizes of Max-T and AMax-T tests for k = 5 and nominal size 0.05

N5 N6 N7 N8

�2 Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

(0:1; 0:2; 0:3; 0:4; 0:5) 0.0530 0.0840 0.0528 0.0642 0.0570 0.0582 0.0538 0.0560

(1; 1; 1; 1; 1) 0.0478 0.0800 0.0510 0.0626 0.0532 0.0604 0.0490 0.0606

(1; 2; 2; 3; 4) 0.0482 0.0756 0.0504 0.0592 0.0502 0.0528 0.0548 0.0568

(1; 1; 1; 1; 0:5) 0.0526 0.0838 0.0504 0.0642 0.0468 0.0570 0.0498 0.0544

(1; 1; 1; 1; 2) 0.0514 0.0780 0.0518 0.0668 0.0566 0.0570 0.0540 0.0558

(1; 1; 1; 1; 3) 0.0526 0.0838 0.0550 0.0650 0.0500 0.0558 0.0492 0.0584

(1; 2; 3; 1; 1) 0.0490 0.0830 0.0502 0.0640 0.0536 0.0643 0.0478 0.0510

(3; 2; 1; 1; 1) 0.0510 0.0730 0.0550 0.0650 0.0560 0.0600 0.0512 0.0548

Table 3: Powers of Max-T and AMax-T tests for k = 3 and � = 0:05

when (�1; �2; �3) = c(1; 1:1; 1:2)

(�21; �
2
2; �

2
3) = (1; 1; 1) (�21; �

2
2; �

2
3) = (1; 2; 3)

N9 N10 N9 N10

c Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

0 0.0489 0.0583 0.0490 0.0628 0.0489 0.0545 0.0490 0.0550

1 0.1080 0.1174 0.1650 0.1628 0.0872 0.1030 0.1184 0.1320

1.2 0.1264 0.1392 0.2030 0.2054 0.1034 0.1118 0.1460 0.1460

1.4 0.1424 0.1552 0.2400 0.2636 0.1150 0.1162 0.1622 0.1770

1.6 0.1616 0.1812 0.2764 0.2924 0.1260 0.1380 0.1904 0.2008

1.8 0.1898 0.2074 0.3420 0.3458 0.1400 0.1488 0.2230 0.2174

2 0.2130 0.2408 0.3842 0.3862 0.1440 0.1658 0.2532 0.2540

2.2 0.2416 0.2530 0.4280 0.4602 0.1662 0.1794 0.2946 0.3008

2.4 0.2562 0.2868 0.5028 0.5172 0.1832 0.2006 0.3276 0.3428

2.6 0.3028 0.3262 0.5570 0.5580 0.2016 0.2272 0.3730 0.3758

2.8 0.3380 0.3484 0.6214 0.6314 0.2238 0.2364 0.3932 0.4274

3 0.3484 0.3814 0.6820 0.6882 0.2380 0.2548 0.4376 0.4586

3.2 0.3954 0.4142 0.7352 0.7484 0.2530 0.2868 0.4826 0.5022

Continued on next page
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Table 3 � Continued from previous page

c Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

3.4 0.4252 0.4702 0.7832 0.8034 0.2800 0.3032 0.5304 0.5540

3.6 0.4660 0.4952 0.8288 0.8394 0.3090 0.3232 0.5860 0.5952

3.8 0.5054 0.5456 0.8684 0.8672 0.3400 0.3464 0.6190 0.6312

4 0.5352 0.5766 0.9024 0.9058 0.3512 0.3788 0.6660 0.6852

4.2 0.5806 0.6032 0.9292 0.9364 0.3730 0.4006 0.7078 0.7222

4.4 0.6054 0.6448 0.9446 0.9474 0.3984 0.4134 0.7416 0.7602

4.6 0.6518 0.6812 0.9632 0.9680 0.4320 0.4530 0.7728 0.7962

4.8 0.6866 0.7100 0.9806 0.9828 0.4540 0.4782 0.8126 0.8278

5 0.7254 0.7418 0.9910 0.9842 0.4772 0.5160 0.8484 0.8552

Table 4: Powers of Max-T and AMax-T tests for k = 3 and � = 0:05

when (�1; �2; �3) = c(1; 1; 1:5)

(�21; �
2
2; �

2
3) = (1; 1; 1) (�21; �

2
2; �

2
3) = (1; 2; 3)

N9 N10 N9 N10

c Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

0 0.0489 0.0583 0.0490 0.0628 0.0489 0.0545 0.0490 0.0550

1 0.4626 0.4918 0.7852 0.7812 0.2422 0.2586 0.4088 0.4136

1.2 0.5972 0.6186 0.9060 0.9064 0.2996 0.3208 0.5450 0.5496

1.4 0.7123 0.7458 0.9686 0.9690 0.3812 0.3948 0.6572 0.6772

1.6 0.8366 0.8500 0.9912 0.9914 0.4662 0.5014 0.7808 0.7948

1.8 0.9128 0.9208 0.9982 0.9988 0.5454 0.5730 0.8668 0.8668

2 0.9558 0.9600 1 1 0.6430 0.6584 0.9258 0.9272

2.2 0.9834 0.98200 1 1 0.7272 0.7320 0.9654 0.9622

2.4 0.9944 0.9956 1 1 0.7968 0.8004 0.9816 0.9848

2.6 0.9978 0.9987 1 1 0.8422 0.8632 0.9936 0.9926

2.8 0.9987 0.9994 1 1 0.8946 0.9048 0.9970 0.9974

3 0.9992 1 1 1 0.9328 0.9450 0.9988 0.9992

3.2 1 1 1 1 0.9608 0.9590 1 1

3.4 1 1 1 1 0.9782 0.9768 1 1

3.6 1 1 1 1 0.9818 0.9880 1 1

3.8 1 1 1 1 0.9918 0.9942 1 1

4 1 1 1 1 0.9956 0.9975 1 1

4.2 1 1 1 1 0.9978 1 1 1

4.4 1 1 1 1 1 1 1 1

4.6 1 1 1 1 1 1 1 1

4.8 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1
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Table 5: Powers of Max-T and AMax-T tests for k = 4 and � = 0:05

when (�1; �2; �3; �4) = c(1; 1:1; 1:2; 1:3)

(�21; �
2
2; �

2
3; �

2
4) = (1; 1; 1; 1) (�21; �

2
2; �

2
3; �

2
4) = (1; 2; 3; 4)

N11 N12 N11 N12

c Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

0 0.0513 0.0592 0.0526 0.0530 0.0550 0.0622 0.0540 0.0515

1 0.1095 0.1320 0.1475 0.1680 0.0930 0.1020 0.1250 0.1270

1.2 0.1225 0.1435 0.2075 0.2165 0.0975 0.1125 0.1340 0.1360

1.4 0.1380 0.1750 0.2435 0.2525 0.1060 0.1355 0.1605 0.1625

1.6 0.1800 0.2015 0.2750 0.2990 0.1180 0.1315 0.1690 0.1755

1.8 0.2020 0.2160 0.3415 0.3540 0.1430 0.1460 0.1845 0.2290

2 0.2220 0.2445 0.3940 0.3980 0.1425 0.1755 0.2280 0.2545

2.2 0.2395 0.2735 0.4675 0.4550 0.1485 0.1804 0.2540 0.2800

2.4 0.2740 0.3115 0.5045 0.5355 0.1655 0.2045 0.2670 0.2875

2.6 0.3125 0.3300 0.5910 0.6220 0.1845 0.2150 0.3225 0.3320

2.8 0.3375 0.3770 0.6395 0.6635 0.2110 0.2390 0.3425 0.3675

3 0.3720 0.4015 0.7155 0.7250 0.2320 0.2535 0.3825 0.4405

3.2 0.4220 0.4535 0.7650 0.7680 0.2455 0.2600 0.4270 0.4440

3.4 0.4625 0.4915 0.8180 0.8270 0.2695 0.2910 0.5000 0.4990

3.6 0.5210 0.5575 0.8615 0.8800 0.2880 0.3225 0.5290 0.5420

3.8 0.5225 0.6005 0.9145 0.9150 0.3015 0.3485 0.5565 0.5890

4 0.5835 0.6310 0.9395 0.9440 0.3375 0.3530 0.5940 0.6190

4.2 0.6325 0.6785 0.9560 0.9645 0.3695 0.3880 0.6340 0.6605

4.4 0.6565 0.7240 0.9740 0.9830 0.3930 0.4165 0.6840 0.7205

4.6 0.7200 0.7565 0.9860 0.9863 0.4200 0.4230 0.7490 0.7545

4.8 0.7410 0.7910 0.9926 0.9930 0.4265 0.4585 0.7910 0.7855

5 0.7790 0.8195 0.9955 0.9965 0.4530 0.4815 0.8160 0.7995

Table 6: Powers of Max-T and AMax-T tests for k = 3 and � = 0:05

when (�1; �2; �3) = c(1; 1:1; 1:2)
(�2

1
; �2

2
; �2

3
) = (1; 1; 1) (�2

1
; �2

2
; �2

3
) = (1; 2; 3)

N9 N10 N9 N10

c Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

0 0.0489 0.0583 0.0490 0.0628 0.0489 0.0545 0.0490 0.0550

1 0.1080 0.1174 0.1650 0.1628 0.0872 0.1030 0.1184 0.1320

1.2 0.1264 0.1392 0.2030 0.2054 0.1034 0.1118 0.1460 0.1460

1.4 0.1424 0.1552 0.2400 0.2636 0.1150 0.1162 0.1622 0.1770

1.6 0.1616 0.1812 0.2764 0.2924 0.1260 0.1380 0.1904 0.2008

1.8 0.1898 0.2074 0.3420 0.3458 0.1400 0.1488 0.2230 0.2174

2 0.2130 0.2408 0.3842 0.3862 0.1440 0.1658 0.2532 0.2540

2.2 0.2416 0.2530 0.4280 0.4602 0.1662 0.1794 0.2946 0.3008

2.4 0.2562 0.2868 0.5028 0.5172 0.1832 0.2006 0.3276 0.3428

2.6 0.3028 0.3262 0.5570 0.5580 0.2016 0.2272 0.3730 0.3758

2.8 0.3380 0.3484 0.6214 0.6314 0.2238 0.2364 0.3932 0.4274

3 0.3484 0.3814 0.6820 0.6882 0.2380 0.2548 0.4376 0.4586

3.2 0.3954 0.4142 0.7352 0.7484 0.2530 0.2868 0.4826 0.5022

3.4 0.4252 0.4702 0.7832 0.8034 0.2800 0.3032 0.5304 0.5540

3.6 0.4660 0.4952 0.8288 0.8394 0.3090 0.3232 0.5860 0.5952

3.8 0.5054 0.5456 0.8684 0.8672 0.3400 0.3464 0.6190 0.6312

4 0.5352 0.5766 0.9024 0.9058 0.3512 0.3788 0.6660 0.6852

Continued on next page
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Table 6 � Continued from previous page

c Max-T AMax-T Max-T AMax-T Max-T AMax-T Max-T AMax-T

4.2 0.5806 0.6032 0.9292 0.9364 0.3730 0.4006 0.7078 0.7222

4.4 0.6054 0.6448 0.9446 0.9474 0.3984 0.4134 0.7416 0.7602

4.6 0.6518 0.6812 0.9632 0.9680 0.4320 0.4530 0.7728 0.7962

4.8 0.6866 0.7100 0.9806 0.9828 0.4540 0.4782 0.8126 0.8278

5 0.7254 0.7418 0.9910 0.9842 0.4772 0.5160 0.8484 0.8552

Remark 1. From Tables 1 and 2, it can be noticed that the parametric bootstrap-based Max-T test

achieves a size of 0.05 for all the combinations of sample sizes and variances those are considered here.

It also achieves size for a very small sample as (5; 5; 5; 5; 5) (not tabulated here). The asymptotic

test AMax-T is liberal for small sample sizes. However as sample sizes increase, AMax-T, yields a size

close to 0.05. This is due to the fact that AMax-T test is an asymptotic test. Similar observations

can be made about the sizes of two tests from the �rst rows of Tables 3, 4, 5 and 6.

Remark 2. It is seen from Tables 3, 4, 5, and 6 that the powers of both tests increase as the value

of c increases, and so the tests are good discriminators between group means.

If the variance of any of the groups increases then power decreases when all other parameters remain

unchanged. Power also increases with the sample sizes. It is also seen that both Max-T and AMax-T

perform equally well in terms of power. However, AMax-T is more liberal and so Max-T may be

preferred. It is to be noted that both the tests perform well for strictly unequal �i 's (see Table 3 and

5) and also for the combination of �i 's with at least one equality (see Table 4 and 6).

Remark 3. For usage of our proposed tests, R packages have been developed. Packages are de-

veloped for arbitrary k . In the packages we only need data (excel data) and level of signi�cance as

input. The output is a vector, whose �rst component is the test statistic value and the second is the

corresponding critical value of the test. If test statistic value is greater than critical value, the null

hypothesis is rejected.

OneWayMaxT and OneWayAMaxT are respectively the packages for Max-T and AMax-T tests for any

number of groups. The corresponding functions are OneWayMaxTcrit and OneWayAMaxTcrit. These

are uploaded to the Github account. To use OneWayMaxT package, one needs to follow the steps as

follows.

install.packages("devtools")

library(devtools)

install_github("AnjanaStat/OneWayMaxT")

library(OneWayMaxT)

OneWayMaxTcrit(data,alpha)

Similar steps are to be followed for the OneWayAMaxT package.

5 Robustness of Max-T and AMax-T tests

In this section, we investigate the robustness of Max-T and AMax-T tests under departure from

normality by evaluating values of estimated sizes and powers. Donaldson [10] studied robustness

of the classical ANOVA F-test when the normality of error distribution and homogeneous variance

conditions are not satis�ed. He checked the values of size and power of the test under deviation

from the assumptions. Ramseyer and Tcheng [21] studied the robustness of the studentized range
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test statistic under violations of the assumptions of normality and homogeneity of variances. They

considered two non-normal distributions: U(0,1) and exponential with location zero and scale unity.

Srivastava [25] also studied the robustness of t-test under the violation of normality.

In this section, we have calculated sizes and powers of Max-T and AMax-T tests for �ve non-normal

distributions: t-distribution with degrees of freedom 3, Laplace distribution, exponential distribution

with scale parameter unity, lognormal distribution and Weibull distribution with scale parameter 1 and

shape parameter 2. Con�gurations of parameters are chosen to be same for normal and non-normal

distributions. By generating data from respective non-normal distributions in Step 1 of Algorithm 3,

sizes and powers are calculated. At �rst standardized non-normal random variable with mean 0 and

variance 1, Yi j is taken and then the �nal data with mean �i and variance �
2
i is taken as Xi j = �i+�iYi j :

Results of robustness study are presented in Tables 7, 8, 9 and 10 for k = 3. The choices for

variances (�21; �
2
2; �

2
3) are taken as (1,1,1) and (1,2,3) and those of sample sizes (n1; n2; n3) are

chosen as (20,30,25) and (60,70,50). For power computation (�1; �2; �3) is taken as c(1; 1:1; 1:2),

where c ranges from 1 to 5, with increment 0.2. The choice c = 0 gives the size of the test. In the

Tables N, T, L, Ex, Wei, LN correspond to normal, t, Laplace or double exponential, exponential,

Weibull, and lognormal distributions respectively.

Table 7: Powers of Max-T when (�1; �2; �3) = c(1; 1:1; 1:2) and (�2

1
; �2

2
; �2

3
) = (1; 1; 1)

(n1; n2; n3) = (20; 30; 25) (n1; n2; n3) = (60; 70; 50)

c N T L Ex Wei LN N T L Ex Wei LN

0 0.0489 0.0458 0.0470 0.0527 0.0580 0.0428 0.0490 0.0508 0.0560 0.0458 0.0558 0.0386

1 0.1080 0.1186 0.1072 0.1240 0.1102 0.1346 0.1650 0.1802 0.1716 0.1492 0.1612 0.1826

1.2 0.1264 0.1294 0.1288 0.1378 0.1304 0.1626 0.2030 0.2228 0.2002 0.2088 0.1902 0.2342

1.4 0.1424 0.1542 0.1498 0.1532 0.1526 0.1942 0.2400 0.2728 0.2482 0.2290 0.2354 0.2816

1.6 0.1616 0.1876 0.1612 0.1852 0.1668 0.2166 0.2764 0.3050 0.2862 0.2954 0.2772 0.3266

1.8 0.1898 0.2036 0.1892 0.2094 0.1898 0.2622 0.3420 0.3806 0.3360 0.3374 0.3342 0.3852

2 0.2130 0.2518 0.2140 0.2372 0.2240 0.2982 0.3842 0.4498 0.3924 0.3850 0.3734 0.4574

2.2 0.2416 0.2756 0.2454 0.2672 0.2344 0.3464 0.4280 0.4894 0.4560 0.4394 0.4416 0.5216

2.4 0.2562 0.3064 0.2658 0.3008 0.2654 0.3878 0.5028 0.5732 0.5060 0.5172 0.4910 0.5858

2.6 0.3028 0.3468 0.3062 0.3290 0.3006 0.4098 0.5570 0.6246 0.5804 0.5698 0.5508 0.6500

2.8 0.3380 0.3910 0.3438 0.3516 0.3342 0.4778 0.6214 0.6944 0.6246 0.6412 0.6192 0.7048

3 0.3484 0.4284 0.3686 0.3914 0.3726 0.4986 0.6820 0.7376 0.6908 0.6812 0.6850 0.7580

3.2 0.3954 0.4704 0.4088 0.4274 0.4092 0.5468 0.7352 0.7956 0.7380 0.7462 0.7370 0.8046

3.4 0.4252 0.5186 0.4442 0.4712 0.4326 0.5980 0.7832 0.8446 0.7850 0.7948 0.7752 0.8422

3.6 0.4660 0.5562 0.4776 0.5050 0.4776 0.6338 0.8288 0.8666 0.8406 0.8412 0.8238 0.8840

3.8 0.5054 0.5930 0.5160 0.5376 0.5090 0.6642 0.8684 0.8964 0.8812 0.8718 0.8668 0.9110

4 0.5352 0.6434 0.5636 0.5810 0.5492 0.7170 0.9024 0.9228 0.9134 0.9028 0.9012 0.9206

4.2 0.5806 0.6666 0.6040 0.6244 0.5870 0.7370 0.9292 0.9456 0.9314 0.9226 0.9322 0.9416

4.4 0.6054 0.6994 0.6342 0.6616 0.6214 0.7638 0.9446 0.9520 0.9504 0.9484 0.9448 0.9538

4.6 0.6518 0.7378 0.6642 0.6894 0.6648 0.8020 0.9632 0.9710 0.9684 0.9668 0.9668 0.9648

4.8 0.6866 0.7726 0.7002 0.7338 0.7072 0.8204 0.9806 0.9768 0.9730 0.9754 0.9778 0.9746

5 0.7254 0.7926 0.7294 0.7506 0.7230 0.8342 0.9910 0.9872 0.9820 0.9825 0.9892 0.9824

Table 8: Power of Max-T when (�1; �2; �3) = c(1; 1:1; 1:2) and (�2

1
; �2

2
; �2

3
) = (1; 2; 3)

(n1; n2; n3) = (20; 30; 25) (n1; n2; n3) = (60; 70; 50)

c N T L Ex Wei LN N T L Ex Wei LN

0 0.0489 0.0438 0.0468 0.0380 0.0460 0.0212 0.0490 0.0478 0.0522 0.0384 0.0486 0.0226

1 0.0872 0.0908 0.0912 0.0756 0.0848 0.0654 0.1184 0.1250 0.1194 0.1026 0.1128 0.0922

1.2 0.1034 0.0942 0.0996 0.0802 0.0922 0.0762 0.1460 0.1614 0.1500 0.1160 0.1324 0.1082

1.4 0.1150 0.1286 0.1106 0.0930 0.1080 0.0958 0.1622 0.1768 0.1698 0.1356 0.1500 0.1468

1.6 0.1260 0.1406 0.1240 0.1070 0.1246 0.1082 0.1904 0.2128 0.1756 0.1688 0.1836 0.1568

Continued on next page
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Table 8 � Continued from previous page

c N T L Ex Wei LN N T L Ex Wei LN

1.8 0.1400 0.1570 0.1410 0.1148 0.1324 0.1300 0.2230 0.2454 0.2244 0.1890 0.2124 0.2124

2 0.1440 0.1594 0.1498 0.1424 0.1362 0.1432 0.2532 0.2888 0.2666 0.2256 0.2378 0.2436

2.2 0.1662 0.1888 0.1754 0.1462 0.1630 0.1636 0.2934 0.3264 0.2982 0.2708 0.2728 0.2710

2.4 0.1832 0.2128 0.1856 0.1648 0.180 0.1906 0.3276 0.3670 0.3282 0.2930 0.3072 0.3324

2.6 0.2160 0.2234 0.2102 0.1812 0.1932 0.2074 0.3730 0.4202 0.3666 0.3432 0.3436 0.3818

2.8 0.2238 0.2570 0.2288 0.1962 0.2082 0.2162 0.3932 0.4474 0.4262 0.3844 0.3816 0.4132

3 0.2380 0.2786 0.2520 0.2102 0.2354 0.2644 0.4376 0.5072 0.4544 0.4208 0.4340 0.4700

3.2 0.2580 0.2998 0.2728 0.2432 0.2466 0.2960 0.4826 0.5464 0.4944 0.4624 0.4806 0.5322

3.4 0.2800 0.3230 0.2872 0.2644 0.2606 0.3258 0.5304 0.5940 0.5480 0.5246 0.5214 0.5756

3.6 0.3090 0.3620 0.3236 0.2936 0.2912 0.3612 0.5860 0.6558 0.5780 0.5610 0.5664 0.6332

3.8 0.3400 0.3844 0.3346 0.3116 0.3152 0.3856 0.6190 0.6932 0.6276 0.6092 0.6088 0.6770

4 0.3512 0.4076 0.3616 0.3402 0.3406 0.4256 0.6660 0.7286 0.6636 0.6672 0.6508 0.7278

4.2 0.3730 0.4512 0.3878 0.3654 0.3602 0.4614 0.7078 0.7516 0.7132 0.6968 0.6920 0.7688

4.4 0.3984 0.4954 0.4334 0.3978 0.3810 0.4972 0.7416 0.8034 0.7542 0.7562 0.7378 0.8034

4.6 0.4320 0.5130 0.4390 0.4228 0.4242 0.5338 0.7728 0.8324 0.7880 0.7840 0.7850 0.8298

4.8 0.4540 0.5494 0.4684 0.4530 0.4512 0.5648 0.8126 0.8582 0.8212 0.8186 0.8112 0.8632

5 0.5160 0.5600 0.5020 0.4922 0.4692 0.5908 0.8484 0.8870 0.8510 0.8544 0.8434 0.8800

Table 9: Power of AMax-T when (�1; �2; �3) = c(1; 1:1; 1:2) and (�2

1
; �2

2
; �2

3
) = (1; 1; 1)

(n1; n2; n3) = (20; 30; 25) (n1; n2; n3) = (60; 70; 50)

c N T L Ex L LN N T L Ex Wei LN

0 0.0583 0.0594 0.0556 0.0624 0.0594 0.0526 0.0628 0.0498 0.0534 0.0504 0.0542 0.0444

1 0.1174 0.1342 0.1294 0.1414 0.1268 0.1598 0.1628 0.1824 0.1754 0.1596 0.1680 0.1858

1.2 0.1392 0.1582 0.1338 0.1584 0.1348 0.1950 0.2054 0.2236 0.2134 0.2062 0.2080 0.2390

1.4 0.1552 0.1788 0.1718 0.1756 0.1578 0.2220 0.2636 0.2706 0.2406 0.2420 0.2452 0.2906

1.6 0.1812 0.2068 0.1844 0.2040 0.1870 0.2556 0.2924 0.3266 0.2942 0.2920 0.2840 0.3456

1.8 0.2074 0.2430 0.2100 0.2290 0.2066 0.2942 0.3458 0.3874 0.3504 0.3498 0.3350 0.4012

2 0.2408 0.2706 0.2278 0.2702 0.2316 0.3202 0.3862 0.4480 0.4066 0.4092 0.3920 0.4798

2.2 0.2530 0.2954 0.2738 0.2898 0.2496 0.3826 0.4602 0.4992 0.4540 0.4666 0.4474 0.5320

2.4 0.2868 0.3484 0.3086 0.3324 0.2950 0.4168 0.5172 0.5708 0.5124 0.5208 0.5216 0.5962

2.6 0.3262 0.3792 0.3338 0.3562 0.3244 0.4644 0.5590 0.6308 0.5704 0.5852 0.5720 0.6670

2.8 0.3484 0.4152 0.3456 0.3818 0.3710 0.5002 0.6314 0.7068 0.6428 0.6332 0.6316 0.7178

3 0.3814 0.4602 0.3984 0.4270 0.3788 0.5512 0.6882 0.7464 0.6868 0.7118 0.6858 0.7664

3.2 0.4142 0.5076 0.4320 0.4968 0.4316 0.5868 0.7484 0.7934 0.7504 0.7548 0.7526 0.8094

3.4 0.4702 0.5322 0.4680 0.5370 0.4594 0.6218 0.8034 0.8390 0.7932 0.7928 0.7960 0.8496

3.6 0.4952 0.5958 0.5160 0.5804 0.4972 0.6590 0.8394 0.8776 0.8402 0.8446 0.8256 0.8860

3.8 0.5456 0.6246 0.5472 0.6218 0.5426 0.7042 0.8672 0.9056 0.8750 0.8762 0.8766 0.9078

4 0.5766 0.6714 0.6080 0.6588 0.5668 0.7356 0.9058 0.9282 0.9112 0.9130 0.9038 0.9238

4.2 0.6034 0.7014 0.6266 0.6732 0.6160 0.7514 0.9364 0.9488 0.9322 0.9344 0.9268 0.9460

4.4 0.6448 0.7434 0.6702 0.6856 0.6438 0.7874 0.9474 0.9584 0.9486 0.9522 0.9542 0.9550

4.6 0.6812 0.7752 0.7028 0.7186 0.6752 0.8196 0.9680 0.9676 0.9650 0.9664 0.9698 0.9676

4.8 0.7100 0.8120 0.7352 0.7554 0.7252 0.8448 0.9828 0.9824 0.9790 0.9802 0.9782 0.9756

5 0.7418 0.8350 0.7618 0.7824 0.7494 0.8650 0.9842 0.9865 0.9836 0.9852 0.9878 0.9772

Table 10: Power of AMax-T when (�1; �2; �3) = c(1; 1:1; 1:2) and (�2

1
; �2

2
; �2

3
) = (1; 2; 3)

(n1; n2; n3) = (20; 30; 25) (n1; n2; n3) = (60; 70; 50)

c N T L Ex Wei LN N T L Ex Wei LN

0 0.0545 0.0554 0.0562 0.0510 0.0550 0.0288 0.0550 0.0518 0.0566 0.0492 0.0516 0.0266

1 0.1030 0.1032 0.1080 0.0838 0.0976 0.0832 0.1320 0.1430 0.1348 0.1102 0.1202 0.1024

1.2 0.1118 0.1208 0.1240 0.0926 0.1002 0.0860 0.1460 0.1568 0.1532 0.1220 0.1396 0.1230

1.4 0.1262 0.1340 0.1310 0.1008 0.1202 0.1030 0.1770 0.1908 0.1740 0.1478 0.1700 0.1462

1.6 0.1380 0.1538 0.1480 0.1292 0.1256 0.1254 0.2008 0.2068 0.2066 0.1720 0.1936 0.1710

1.8 0.1488 0.1728 0.1542 0.1320 0.1562 0.1364 0.2174 0.2542 0.2304 0.1862 0.2264 0.2176

2 0.1658 0.1892 0.1752 0.1588 0.1610 0.1672 0.2540 0.2980 0.2616 0.2270 0.2450 0.2390

2.2 0.1794 0.2040 0.2014 0.1626 0.1828 0.1796 0.3008 0.3380 0.2966 0.2724 0.2900 0.2936

2.4 0.2006 0.2248 0.2078 0.1896 0.1958 0.2144 0.3428 0.3852 0.3314 0.3200 0.3228 0.3240

2.6 0.2272 0.2584 0.2186 0.1978 0.2028 0.2384 0.3758 0.4258 0.3842 0.3576 0.3524 0.3662

Continued on next page
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Table 10 � Continued from previous page

c N T L Ex Wei LN N T L Ex Wei LN

2.8 0.2364 0.2914 0.2478 0.2306 0.2266 0.2620 0.4274 0.4680 0.4212 0.3898 0.3984 0.4358

3 0.2548 0.3128 0.2714 0.2526 0.2490 0.2928 0.4586 0.5154 0.4728 0.4404 0.4426 0.4868

3.2 0.2868 0.3404 0.2788 0.2686 0.2578 0.3384 0.5022 0.5578 0.5056 0.4908 0.4794 0.5428

3.4 0.3032 0.3520 0.3158 0.2882 0.2956 0.3508 0.5540 0.6074 0.5458 0.5368 0.5500 0.6048

3.6 0.3232 0.3802 0.3354 0.3256 0.3292 0.4080 0.5952 0.6504 0.6042 0.5804 0.5748 0.6582

3.8 0.3464 0.4288 0.3770 0.3568 0.3506 0.4394 0.6312 0.6988 0.6438 0.6430 0.6432 0.6874

4 0.3788 0.4668 0.3916 0.3746 0.3700 0.4696 0.6852 0.7264 0.6914 0.6626 0.6748 0.7254

4.2 0.4066 0.4882 0.4184 0.4010 0.3982 0.5006 0.7222 0.7782 0.7238 0.7128 0.7176 0.7732

4.4 0.4134 0.4986 0.4518 0.4562 0.4186 0.5394 0.7602 0.8116 0.7594 0.7594 0.7442 0.8130

4.6 0.4530 0.5470 0.4788 0.4660 0.4536 0.5776 0.7962 0.8360 0.7982 0.7978 0.7866 0.8522

4.8 0.4782 0.5688 0.5024 0.4878 0.4752 0.6016 0.8278 0.8632 0.8258 0.8184 0.8332 0.8710

5 0.5160 0.6046 0.5316 0.5186 0.5110 0.6264 0.8552 0.8832 0.8620 0.8620 0.8518 0.8794

Remark 4. For equal and unequal group variances, there are marginal gains in powers for non-normal

distributions for several values of c . The gains are higher for t and lognormal distributions in most

cases. However, for Laplace, exponential and Weibull distributions, there is marginal loss of power for

several values of c . Power di�erences range from 0 to 0.17 for moderate samples and from 0.0002

to 0.09 for large samples. Sizes of the tests are close to 0.05 for all distributions.

Remark 5. Similar observations are made for AMax-T test also. For moderate samples power

di�erence ranges from 0 to 0.11 and for large samples from 0.0002 to 0.06. Size values based

on all distributions are seen to be close to 0.05. However, tests are more conservative for exponential

and lognormal distributions when variances are unequal. Thus both tests are quite robust.

6 A numerical example

In this section, we illustrate the proposed methods for testing the null hypothesis of equality of treat-

ment e�ects against ordered alternatives under heteroscedasticity with the help of one example. We

have considered the signal strengths of four cellphone operators - Airtel, Vi India, CellOne, Jio in

October 2021 from di�erent locations of India. The raw data is taken from Open Government Data

(OGD) Platform-data.gov.in-India. The original data consists of signal strengths of 150,561 Airtel,

96,875 Vi India, 6787 CellOne and 327,540 Jio operators. Data are in dBm units. A value close to

0 indicates a greater noise level. The data is sorted independently in 4 di�erent groups of Airtel, Vi

India, CellOne and Jio operator. Independent random samples of sizes 55, 48, 50 and 50 are chosen

from Vi India, Airtel, Jio and CellOne groups respectively, and are shown in Table 9.

We denote operators Vi India, Airtel, Jio and CellOne as respective groups 1, 2, 3, and 4. The p-

values of goodness of �t test for testing whether each group is normally distributed with two unknown

parameters (mean and variance) are obtained as follows: 0.777(CellOne), 0.128(Jio), 0.128(Vi India),

0.0924(Airtel). So we conclude that the data set in each group is normally distributed with unknown

mean and variance. For checking the heteroscedastic variance condition, Bartlett's test is applied.

As the observed p-value at level 0.05 is 0.027094, we conclude that the variances of the groups are

di�erent.

Our aim is to test H0 : �1 = �2 = �3 = �4 against H1 : �1 � �2 � �3 � �4 with at least one strict

inequality, where �i is the mean strength of operator i , i = 1; 2; 3; 4: The value of the Max-T test

statistic is evaluated to be 3.684883 and the critical value corresponding to sample sizes (55, 48,

50, 50) and sample variances (80:89; 118:35; 263:84; 210:92) is obtained as 2.166031 at 5% level of
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Vi India Airtel Jio CellOne

-99 -86 -99 -104 -99 -55 -88 -105

-92 -99 -112 -74 -106 -90 -51 -91

-106 -85 -98 -111 -77 -69 -86 -95

-79 -83 -102 -109 -69 -99 -81 -90

-100 -112 -109 -103 -90 -96 -61 -103

-112 -95 -98 -82 -109 -65 -91 -104

-76 -93 -84 -83 -59 -62 -65 -71

-107 -101 -91 -79 -90 -103 -86 -85

-80 -104 -98 -102 -90 -93 -81 -99

-92 -89 -105 -80 -109 -79 -100 -58

-88 -90 -105 -104 -105 -86 -83 -87

-84 -98 -96 -112 -90 -90 -64 -50

-107 -78 -84 -108 -90 -58 -79 -75

-94 -109 -98 -90 -108 -102 -75 -65

-96 -89 -102 -110 -89 -65 -67 -81

-94 -105 -95 -84 -90 -65 -63 -100

-104 -104 -71 -96 -112 -106 -88 -108

-96 -107 -98 -97 -59 -112 -53 -75

-96 -84 -99 -63 -92 -75 -75

-101 -92 -94 -90 -75 -89 -72

-95 -101 -102 -78 -85

-102 -106 -94 -99 -93

-100 -95 -109 -108 -89

-93 -99 -110 -93 -94

-105 -103 -82 -86 -81

-98 -78 -86 -73

-103 -102 -95 -93

-95 -108 -77 -96

-110 -104 -81 -93

-87 -93 -70 -76

Table 11: Signal strength

signi�cance. AMax-T critical value corresponding to the same con�gurations obtained at 5% level

of signi�cance as 2.130859. Hence H0 is rejected here. Therefore, signal strength values of the

operator's Vi India, Airtel, Jio, and CellOne are in increasing order. As negative values indicate less

background noise, according to the performance the order is: Vi India � Airtel � Jio � CellOne with

at least one strict inequality. It is further observed using Welch's t-test on Operators 1 and 2, that

they have equal means. But still proposed Max-T and AMax-T tests reject H0. This shows the good

discrimination power of proposed tests.
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Abstract

In the current data science era, k-NN rules are routinely used in machine learning problems without knowing

their theoretical properties and asymptotic behavior. Cover and Hart [11] were the �rst to derive and examine

the asymptotic risk of this rule. They studied this rule in a Bayesian framework and obtained (natural) upper

and lower bounds on its asymptotic risk in terms of the optimal Bayes risk. The authors also showed that as k

increases, the asymptotic risk decreases. This was a groundbreaking study, and we believe the NN Classi�cation

theory must be included in the data science curriculum and any multivariate analysis books in statistics. Keeping

these in mind, this paper presents Cover and Hart ([11]) results and related material in such a way that their

material is easily understood by students and future authors � and researchers - who can include this material

in their multivariate statistics books. Using a combinatorial identity, we give a new proof of the result that the

asymptotic risk of the k-NN rule decreases as k increases inde�nitely. The rule has been widely tested on a

variety of real-world data sets. For the bene�t of readers, we present here the performance outcome of this

rule on the well-known IRIS (Anderson [2]) data sets.

Keywords: Asymptotic risk, Bayes' risk, Nearest Neighbor Classi�cation, Cover and Hart Inequality, Probability

Error.

AMS subject classi�cation: Primary 62H20, Secondary 62G07, 62G08

1 Introduction

The basic problem in classi�cation/discrimination is to correctly classify an unknown observation

Z,known to be from one of the s given populations (or classes) �1; �2; � � � ; �s , to its right parent

population [6]. The probability distributions of all these populations may be fully known to the

statistician. In this event, the problem will fall in the category of parametric classi�cation and Bayes

procedure produces an optimal solution. On the other extreme, the probability distributions of these

populations may be entirely unknown excepting, however, that an identi�ed training sample is available

from each one of them. The problem then falls under the domain of nonparametric classi�cation,

and quite naturally, no optimal solution exists in this case with respect to the unknown underlying

distributions. Here is, in this latter type of scenarios, that one can pro�tably employ the NN type

classi�cation methodology.

The nearest neighbor (NN) type classi�cation rule was �rst introduced by Fix and Hodges [3]. Their

proposed rule was for only two (s = 2) populations and was based on the two available identi�ed

(training) samples - one from each of the two given populations - and is described for a �xed integer

© 2022 Author(s). (https://www.thegsa.in/).
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k as follows: Their rule classi�es Z to the population �1 if k1/n1 > k2/n2, where ki = # of

observations from the population �i (i = 1; 2) among the k=k1+k2 observations nearest (determined

using a distance function) to Z, and n1, n2 are the corresponding sample sizes with n = n1 + n2
denoting the total sample size. Cover and Hart ([11]) employed a slightly modi�ed version of the

above rule. Their procedure is based on an identi�ed training sample from a mixture of s populations

�1; �2; � � � ; �s . For s = 2, the rule classi�es Z to �i (i = 1; 2) if ki = maxfk1; k2g; and for general s,

it classi�es Z to �i (i = 1; 2; � � � ; s) if ki = maxfk1; k2; � � � ; ksg where ki = # of observations from

�i (i = 1; 2; � � � ; s) from among the k=k1+k2+ � � �+ ks observations nearest to Z.

In applying k-NN classi�cation rule, in case of ties among two or more kj 's at the top, one may employ

appropriate randomization in assigning Zto one of the tied classes or simply shift k to a di�erent close

enough workable value.

Preliminaries. Let (X1; �1), (X2; �2), : : :, (Xn; �n) be independent identically distributed (i.i.d.) random

variables (r.v.'s) taking values in Rd � f1; 2; � � � ; sg where f�ig, i = 1; 2; � � � ; n are i.i.d. r.v.'s with

P (�i = j)=�j , j = 1; 2; � � � ; s, and
∑s

j=1 �j = 1. The �j 's are called the prior probabilities associated

with populations �j , j = 1; 2; � � � ; s. If �i = j , then Xi is identi�ed with the population �j , which is

assumed to have a distinct probability density fj , for each j = 1; 2; � � � ; s, with respect to Lebesgue

measure �. Let (Z; �) be an observation taking value in Rd�f1; 2; � � � ; sg where only Z is observable.

The object is to classify Z to one of the given s populations based on the information contained in

the training sample. For the classi�cation of the observation Z, it is desired to estimate � by utilizing

the information contained in the (identi�ed) training samplef(Xi ; �i) : j = 1; 2; � � � ; ng. By identi�ed

sample, we mean that the value of each �i is assumed to be given or known `a priori'. This is the

Bayesian framework for which we also need a loss function. Let �0n be an estimate of � and let L(�; �0n)
denote the loss incurred in estimating � with �0n. Then by Bayes theorem, the posterior probability of

(� = i) given Z = z is

�i(z) = P (� = i jZ = z) = �i fi(z)

/
s∑

j=1

�j fj(z); i = 1; 2; � � � ; s: (1)

If a classi�cation rule � assigns Z to the population �j , then the conditional expected loss, i.e.,

conditional risk, given Z = z , is clearly

rj(z) = E[L(�; �0n)jZ = z ] =

s∑

i=1

L(i ; j)�i(z): (2)

The rule that minimizes this conditional risk rj(z) is called the Bayes rule. For the Bayes rule ��,
therefore, the conditional (minimum) Bayes risk r �(z) is given by

r �(z) = min
j
f

s∑

i=1

L(i ; j)�i(z)g; (3)

and thereby the overall (minimum) Bayes risk R�
s by

R�
s = E[r �(Z)] =

∫
r �(z)f (z)dz; (4)

where

f (z) =

s∑

j=1

�j fj(z) (5)
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denotes the marginal density of Z. In this article, we take L(�; �0n) as the 0� 1 loss function, i.e.,

L(�; �0n) =

{
0 if � = �0n
1 if � 6= �0n:

(6)

Using this 0� 1 loss function, the expressions (3) and (4), the conditional Bayes risk and the overall

Bayes risk can be expressed, respectively, as

r �(z) = minf
∑

j 6=1
�j(z);

∑

j 6=2
�j(z); � � � ;

∑

j 6=s

�j(z)g

= minf1� �1(z); 1� �2(z); � � � ; 1� �s(z)g; (7)

and

R�
s = E[r �(Z)] =

∫
min(1� �1(z); 1� �2(z); � � � ; 1� �s(z))f (z)dz

=

∫
min(

∑

j 6=1
�j fj(z);

∑

j 6=2
�j fj(z); � � � ;

∑

j 6=s

�j fj(z))dz: (8)

Nearest Neighbor (NN) classi�cation rule

Let f(Xi ; �i)g, i = 1; 2; � � � ; n be an identi�ed training sample from a mixture of s populations with a

mixture proportion P (�i = j) = �j , j = 1; 2; � � � ; s: We call X 0
1n 2 fX1; X2; � � � ; Xng the �rst nearest

neighbor of Z if

min
i2f1;2;��� ;ng

kXi � Zk = kX 0
1n � Zk :

Let �01n denote the class of X
0
1n. Thus, the 1-NN rule classi�es Z to the class of X 0

1n, i.e., to the class

�01n. Let kj denote the number of observations from the population �j among k = k1 + k2 + � � �+ ks
observations among X1; X2; � � � ; Xn that are nearest to Z. The k�NN rule classi�es Z to population

�i , if ki =maxfk1; k2;� � � ;ksg with randomization in case of a tie at the top. The NN rule utilizes

only the k nearest neighbors of Z , and the remaining (n� k) observations in the (identi�ed) training

sample are ignored.

Suppose the proposed NN classi�cation rule �n assigns Z to a category �0n. If � is indeed the true

category of Z, the NN classi�cation rule incurs loss L(�; �0n). We de�ne NN risk Rs(�n) by its

expectation

Rs(�n) = E[L(�; �0n); (9)

and the limiting (large sample), as n !1, k-NN risk Rs for �xed k is given by

Rs = lim
n!1

E[L(�; �0n]: (10)

The aim is to study the asymptotic (large sample) behavior of this k- NN risk. Let us �rst show that

the 1-NN X 0
1n converges to Z a.s., as n !1. This result will be needed later to obtain asymptotic

(overall) NN risk.

Lemma 1.1. Let Z and (X1; �); (X2; �); � � � ; (Xn; �) be independent identically distributed random

variables taking values on Rd �f1; 2; � � � ; sg. Let X 0
1n denote the 1-NN of Z derived from the sample

fX1; X2; � � � ; Xng. Then,

X 0
1n

a:s:
�! Z; as n !1 (11)
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Proof. For any " > 0, we have in view of the independence of Zand Xi 's that

P (kX 0
1n � Zk > ") = P

(
min
i
kXi � Zk > "

)

= EP (kX1 � Zk > "; kX2 � Zk > "; � � � ; kXn � Zk > "jZ)

= [EfP (kX1 � Zk) > "jZg]n

= [1� EP (kX1 � Zk � "jZ)]n ! 0 (12)

as n !1 by the Dominated Convergence theorem. Since the set fkX 0
1n � Zk > "g is monotonically

decreasing in n, it follows that

lim
n!1

P

[⋃

l�n

fkX 0
1l � Zk > "g

]
= lim

n!1
P (kX 0

1n � Zk > ") = 0

by convergence (12). Thus, by the standard a.s. convergence criterion, we can conclude that

X 0
1n

a:s:
�! Z, as n !1.

In Section 2, the upper and lower bounds on the asymptotic risk of the 1-NN rule in terms of optimal

Bayes risk are given. In Section 3, we have given an alternative derivation of the asymptotic risk of the

k-NN rule that provides a new proof for the decreasing nature of its asymptotic risk with increasing

k using a combinatorial identity. The results of an empirical study are reported in Section 4. Finally,

Section 5 contains some useful concluding remarks.

2 Asymptotic risk of 1-NN Classi�cation Rule and its bounds

when s = 2(Cover and Hart [11])

First, consider the case when s = 2. In order to classify Z, we estimate its class � using information

contained in the two (identi�ed) training samples. Let 1-NN rule estimate � by �01n.
Thus, the conditional risk of 1-NN rule given Z = zand X 0

1n = x 01n is given by

r(z ; x 01n) = E [L(�; �01n)jZ = z;X 0
1n = x 01n] = P (� 6= �01njZ = z;X 0

1n = x 01n)

= P (� = 1 \ �01n = 2jZ = z;X 0
1n = x 01n) + P (� = 2 \ �01n = 1jZ = z;X 0

1n = x 01n) : (13)

Upon using the conditional independence of � and �01n, the equation (13) can be written as

r(z ; x 01n) = P (� = 1jZ = z)P (�01n = 2jX 0
1n = x 01n) + P (� = 2jZ = z)P (�01n = 1jX 0

1n = x 01n)

= �1(z)�2(x
0
1n) + �2(z)�1(x

0
1n); (14)

where �i , i = 1; 2; is given in (1).

Now we state and prove a theorem on limiting 1-NN risk.

Theorem 2.1. Suppose z is a continuity point of fi , i = 1; 2. Then the limiting conditional risk given

Z = z and the unconditional risk of 1-NN Rule are given, respectively, by

r(z) = lim
n!1

r(z ; x 01n) = 2�1(z)�2(z): (15)

and

R2 = E[r(Z)] = 2E [�1(Z)�2(Z)] ; (16)

where �2(z) = 1� �1(z), when s = 2.
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Proof. Using Lemma 1.1, the continuity of fi 's at z and equation (14), we obtain

r(z) = lim
n!1

r(z ; x 01n) = �1(z) � lim
n!1

�2(x
0
1n) + �2(z) � lim

n!1
�1(x

0
1n)

= �1(z)�2(z) + �2(z)�1(z) = 2�1(z)�2(z): (17)

By the Dominated Convergence theorem, therefore, we can conclude that

R2 = lim
n!1

E [r(Z; x 01n)] = E [r(Z)] = 2E [�1(Z)�2(Z)] : (18)

This completes the proof.

Below we state a theorem giving lower and upper bounds on Rs with s = 2:

Theorem 2.2. The asymptotic risk R2of 1-NN Rule has the following upper and lower bounds:

R�
2 � R2 � 2R�

2(1� R�
2);

where R�
2 is the (optimal) Bayes risk de�ned in (8) for s = 2.

Proof. In view of equation (16), we have

r(z) = �1(z)�2(z) + �2(z)�1(z) � minf�1(z); �2(z)g = minf�1(z); 1� �1(z)g: (19)

Now expectations on both sides of (19) and by equation (8) with s = 2, we have

R2 = E [r(Z)] �

∫
minf�1(z); 1� �1(z)gf (z)dz = R�

2: (20)

In view of equation (7) for s = 2, the conditional Bayes risk is

r �(z) = minf1� �1(z); 1� �2(z)g = minf�1(z); �2(z)g = minf�1(z); 1� �1(z)g

which is symmetric in �1 and �2, since �1 + �2 = 1. Thus, we may write

�1(z)�2(z) = �1(z)(1� �1(z)) = r �(z)(1� r �(z)); (21)

so that by equations (18), (21) and Jensen's inequality, we have

R2 = 2E [�1(Z)(1� �1(Z))] = 2E [r �(Z)(1� r �(Z))] = 2[E(r �(Z))� E(r �(Z))2]

� 2[E(r �(Z))� (E(r �(Z)))2] = 2[R�
2 � R�2

2 ] = 2R�
2(1� R�

2): (22)

Combining equations (20) and (22), we arrive at

R�
2 � R2 � 2R�

2(1� R�
2):

The proof is complete.

Example 1. Suppose the r.v. Z has the beta density either f1(z) = 2z or f2 = 2(1�z), for 0 � z � 1;

and �1 = �2 = 1/2. From the equation (18),

R2 = 2E [�1(Z)�2(Z)] = 2

∫
�1�2f1(z)f2(z)

�1f1(z) + �2f2(z)
dz = 2

∫ 1

0

z(1� z)dz = 2
�(2)�(2)

�(4)
=

2

6
=

1

3
:

From (8) with s = 2,

R�
2 =

∫
min(�1f1(z); �2f2(�2))dz =

∫ 1

0

[z ^ (1� z)]dz

=

∫

z<1�z

zdz +

∫

z>1�z

(1� z)dz =

∫ 1/2

0

zdz +

∫ 1

1/2

(1� z)dz =
1

8
+

1

8
=

1

4
:

Note that R�
2 =

1
4
� R2 =

1
3
� 2R�

2(1�R�
2) =

3
8
= 0:375: Thus, the result of Theorem 2.2 is veri�ed.
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Now we extend the results of Theorem 2.2 to s populations in Theorem 2.3 below:

Theorem 2.3. The asymptotic risk Rsof 1-NN Rule has the following upper and lower bounds:

R�
s � Rs � R�

s (2�
s

s�1R
�
s );

where R�
s is the (optimal) Bayes risk de�ned in (8) for s populations.

Proof. The conditional 1-NN rule risk under s populations is

r(z ; x 01n) = E [L(�; �01n)jZ = z;X 0
1n = x 01n] =

s∑

i=1

s∑

j 6=i

P [� = i \ �01n = j jZ = z;X 0
1n = x 01n] (23)

Since � and �01n are conditionally independent given Zand X 0
1n, the equation (23) can be rewritten as

r(z ; x 01n) =
s∑

i=1

s∑

j 6=i

P [� = i jz ]P [�0n = j jx 01n] =
s∑

i=1

s∑

j 6=i

�i(z)�j(x
0
1n): (24)

Since X 0
1n ! Z a.s. by Lemma 1.1 and fj 's are continuous a.e., the posterior probability �j(x

0
1n) !

�j(z) a.e. Thus, the conditional risk given in equation (24) converges, as n !1, to the asymptotic

conditional risk

r(z) =

s∑

i=1

s∑

j 6=i

�i(z)�j(z) = 1�

s∑

j=1

�2j (z): (25)

Let �l(z) = max
j
f�1(z); �2(z); � � � ; �s(z)g. Thus, the conditional Byes risk r �(z) given in (7) can be

expressed as

r �(z) = 1� �l(z); (26)

so that applying Cauchy-Schwartz inequality to
[∑s

j 6=l �j(z)
]2

and using equation (26), we have

(s � 1)

s∑

j 6=l

�2j (z) �

[
s∑

j 6=l

�j(z)

]2
= [1� �l(z)]

2 = [r �(z)]2: (27)

Now adding the term (s�1)�2l (z) on both sides in the above equation (27) and using �l(z) = 1�r �(z),
we get

s∑

j=1

�2j (z) �
[r �(z)]2

(s � 1)
+ [1� r �(z)]2 = 1� 2r �(z) +

(
s

s�1
)
[r �(z)]2: (28)

Combining the equations (25) and (28), we arrive at the following expression

r(z) � 2r �(z)�
s

(s � 1)
[r �(z)]2: (29)

Now taking expectations on both sides of the equation (29) and applying Jensen's inequality, we

obtain

Rs � 2E[r �(Z)]�
s

(s � 1)
E[r �(Z)]2 � 2R�

s �
s

(s � 1)
[E(r �(Z)]2

= 2R�
s �

s

(s � 1)
R�2

s = R�
s (2�

s

(s � 1)
R�

s ); (30)
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which gives the upper bound. To get a lower bound on Rs , note that � since the minimum is always

less or equal to the mean and
∑s

i=1 �i(z) = 1

min

{∑

i 6=1
�i fi(z);

∑

i 6=2
�i fi(z); � � � ;

∑

i 6=s

�i fi(z)

}
�

s∑

i=1

�i(z)

s∑

j 6=i

�j fj(z): (31)

Now dividing with
s∑

i=1

�i fi(z) and then integrating with respect to z on both sides of the equation

(31), the resulting equation at once yields (see equations (5), (8) and (25)) that

R�
s � Rs : (32)

The proof is complete in view of (30) and (32).

3 The k-NN Rule and its Asymptotic risk

We consider the case when s = 2. It is possible to show that kth NN of Z, which we denote by X 0
kn,

converges to Z. That is X 0
kn

a:s:
�! Z as n !1 for �xed k .

Lemma 3.1. Let Z and (X1; �); (X2; �); � � � ; (Xn; �) be independent identically distributed random

variables taking values on Rd �f1; 2; � � � ; sg. Let X 0
kn denote the k-NN of Z derived from the sample

fX1; X2; � � � ; Xng. Then, X 0
kn

a:s:
�! Z, as n !1.

Proof. For any " > 0, we have

P (kX 0
kn � Zk > ") = P (kX 0

kn � Zk > "; kX 0
1n � Zk > ") + P (kX 0

kn � Zk > "; kX 0
1n � Zk � ")

� P (kX1 � Zk > "; kX2 � Zk > "; � � � ; kXn � Zk > ")

+P
(
kXi1 � Zk > "; kXi2 � Zk > "; � � � ;

∥∥Xin�k+1 � Z
∥∥ > "

)

= [EP (kX1 � Zk) > "jZ]n + [EP (kXi1 � Zk) > "jZ]n�k+1

= [1� EP (kX1 � Zk � "jZ)]n + [1� EP (kXi1 � Zk � "jZ)]n�k+1

! 0; as n !1: (33)

Since the set fkX 0
kn � Zk > "g is monotonically decreasing in n, it follows that

lim
n!1

P

[⋃

j�n

{∥∥X 0
kj � Z

∥∥ > "
}
]
= lim

n!1
P (kX 0

kn � Zk > ") = 0

by (33). Thus, by the standard a.s. convergence criterion, we can conclude that X 0
kn

a:s:
�! Z, as

n !1. The proof of Lemma 3.1 is complete.

Let k-NN rule estimate � by �0kn. Then the conditional risk of k-NN rule, given Z = zand X 0
kn = x 0kn,

is given by

r(z ; x 0kn) = E [L(�; �0kn)jZ = z;X 0
kn = x 0kn] = P (� 6= �0knjZ = z;X 0

kn = x 0kn)

= P (� = 1 \ �0kn = 2jZ = z;X 0
kn = x 0kn) + P (� = 2 \ �0kn = 1jZ = z;X 0

kn = x 0kn) : (34)

Upon using the conditional independence of � and �0n, equation (34) can be written as
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r(z ; x 0kn) = P (� = 1jZ = z)P (�0kn = 2jX 0
kn = x 0kn) + P (� = 2jZ = z)P (�0kn = 1jX 0

kn = x 0kn); (35)

where for k = 2m + 1,

P (�0kn = 2jX 0
kn = x 0kn) =

m∑

i=0

(
2m+1
i

)
�i
1(x

0
kn)�

2m+1�i
2 (x 0kn) (36)

and

P (�0kn = 1jX 0
kn = x 0kn) =

2m+1∑

i=m+1

(
2m+1
i

)
�i
1(x

0
kn)�

2m+1�i
2 (x 0kn): (37)

Thus, in view of equations (1), (36), and (37), the equation (35) can be rewritten as

r(z ; x 0kn) = �1(z)

m∑

i=0

(
2m+1
i

)
�i
1(x

0
kn)�

2m+1�i
2 (x 0kn) + �2(z)

2m+1∑

i=m+1

(
2m+1
i

)
�i
1(x

0
kn)�

2m+1�i
2 (x 0kn); (38)

similarly, when k = 2m + 2, the

P (�0kn = 2jX 0
kn = x 0kn) =

m∑

i=0

(
2m+2
i

)
�i
1(x

0
kn)�

2m+2�i
2 (x 0kn) +

1
2

(
2m+2
m+1

)
�m+1
1 (x 0kn)�

m+1
2 (x 0kn)

and

P (�0kn = 1jX 0
kn = x 0kn) =

2m+2∑

i=m+2

(
2m+2
i

)
�i
1(x

0
kn)�

2m+2�i
2 (x 0kn) +

1
2

(
2m+2
m+1

)
�m+1
1 (x 0kn)�

m+1
2 (x 0kn):

The equations (35) in this case will have the form

r(z ; x 0kn) = �1(z)[

m∑

i=0

(
2m+2
i

)
�i
1(x

0
kn)�

2m+2�i
2 (x 0kn) +

1
2

(
2m+2
m+1

)
�m+1
1 (x 0kn)�

m+1
2 (x 0kn)]

+�2(z)[

2m+2∑

i=m+2

(
2m+2
i

)
�i
1(x

0
kn)�

2m+2�i
2 (x 0kn) +

1
2

(
2m+2
m+1

)
�m+1
1 (x 0kn)�

m+1
2 (x 0kn)]: (39)

We now state

Theorem 3.1. Suppose z is a continuity point of fi , i = 1; 2. Then for s = 2, the limiting conditional

risk given Z = z and the unconditional risk of the k-NN rule are given, respectively, by

(I) for k = 2m + 1,

rk(z) = lim
n!1

r(z ; x 0kn); (40)

with

rk(z) = �1(z)

m∑

i=0

(
2m+1
i

)
�i
1(z)�

2m+1�i
2 (z) + �2(z)

2m+1∑

i=m+1

(
2m+1
i

)
�i
1(z)�

2m+1�i
2 (z) (41)
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and for k = 2m + 2,

rk(z) = �1(z)[

m∑

i=0

(
2m+2
i

)
�i
1(z)�

2m+2�i
2 (z) + 1

2

(
2m+2
m+1

)
�m+1
1 (z)�m+1

2 (z)]

+�2(z)[

2m+2∑

i=m+2

(
2m+2
i

)
�i
1(z)�

2m+2�i
2 (z) + 1

2

(
2m+2
m+1

)
�m+1
1 (z)�m+1

2 (z)]; (42)

and

(II) R2(k)= E[rk(Z)], for s = 2.

Proof. Since X 0
kn ! Z a.s., as n ! 1, so that conditionally x 0kn ! z and fj 's a.e. continuous, the

posterior probability �j(x
0
kn)! �j(z) a.e. for j = 1; 2. Thus, the conditional risk as given in equation

(24) converges, as n !1, to asymptotic conditional risk, which for k = 2m + 1 from (38), is given

by the expression

rk(z) = �1(z)

m∑

i=0

(
2m+1
i

)
�i
1(z)�

2m+1�i
2 (z) + �2(z)

2m+1∑

i=m+1

(
2m+1
i

)
�i
1(z)�

2m+1�i
2 (z) (43)

and for k = 2m + 2 from (39), by the expression

rk(z) = �1(z)[

m∑

i=0

(
2m+2
i

)
�i
1(z)�

2m+2�i
2 (z) + 1

2

(
2m+2
m+1

)
�m+1
1 (z)�m+1

2 (z)]

+�2(z)[

2m+2∑

i=m+2

(
2m+2
i

)
�i
1(z)�

2m+2�i
2 (z) + 1

2

(
2m+2
m+1

)
�m+1
1 (z)�m+1

2 (z)] (44)

This completes the �rst part(I) of the proof. The unconditional risk R2(k) is obtained by

taking expectations with respect to Z, i.e., with respect to the distribution with density f (z) =

�1f1(z)+�2f2(z). This gives in part(II) the unconditional risk as R2(k) = E[rk(Z)]. The proof is

complete.

The conditional risks given in (43) and (44) are, in fact, equal. This is proved in the following theorem.

Theorem 3.2. The asymptotic conditional risk rk(z) has the following properties:

(a) r2m+1 = r2m+2 for m = 0; 1; 2; � � � and (b) r2m+1 > r2m+3 for m = 0; 1; 2; � � �

The above (a) and (b) imply that r2m+2 > r2m+4 for m = 0; 1; 2; � � � .

Proof. For notational simplicity, we will use �i(z) = �i for i = 1; 2: For part (a), we will simplify the

conditional risk r2m+2(z)given in (44) in terms of r2m+1(z).

The conditional risk r2m+2(z)from (44) can be written as

r2m+2(z) = �1[

m∑

i=0

(
2m+2
i

)
�i
1�

2m+2�i
2 + 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 ]

+�2[

2m+2∑

i=m+2

(
2m+2
i

)
�i
1�

2m+2�i
2 + 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 ] (45)

= �1

m∑

i=0

(
2m+2
i

)
�i
1�

2m+2�i
2 + �2

2m+2∑

i=m+2

(
2m+2
i

)
�i
1�

2m+2�i
2 + 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 (�1 + �2)

= �1

m∑

i=0

(
2m+2
i

)
�i
1�

2m+2�i
2 + �2

2m+2∑

i=m+2

(
2m+2
i

)
�i
1�

2m+2�i
2 + 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 : (46)
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We will use the following combinatorial identities

(nk) =
(
n�1
k

)
+
(
n�1
k�1
)
; (47)

and the one that it leads to, namely,

(
2m+2
m+1

)
=
(
2m+1
m+1

)
+
(
2m+1
m

)
= 2

(
2m+1
m+1

)
= 2

(
2m+1
m

)
(48)

in the above equation (45), so that

r2m+2(z) = �1[

m∑

i=0

[
(
2m+1

i

)
+
(
2m+1
i�1
)
]�i

1�
2m+2�i
2 + 1

2
[
(
2m+1
m+1

)
+
(
2m+1
m

)
]�m+1

1 �m+1
2 ]

+�2[

2m+2∑

i=m+2

[
(
2m+1

i

)
+
(
2m+1
i�1
)
]�i

1�
2m+2�i
2 + 1

2
[
(
2m+1
m+1

)
+
(
2m+1
m

)
]�m+1

1 �m+1
2 ]

= �1[

m∑

i=0

(
2m+1

i

)
�i
1�

2m+2�i
2 +

m�1∑

i=0

(
2m+1
i

)
�i+1
1 �2m+1�i

2 +
(
2m+1
m

)
�m+1
1 �m+1

2 ]

+�2[

2m+1∑

i=m+2

(
2m+1

i

)
�i
1�

2m+2�i
2 +

2m+1∑

i=m+1

(
2m+1
i

)
�i+1
1 �2m+1�i

2 +
(
2m+1
m+1

)
�m+1
1 �m+1

2 ]

= �1[

m∑

i=0

(
2m+1

i

)
�i
1�

2m+2�i
2 +

m∑

i=0

(
2m+1
i

)
�i+1
1 �2m+1�i

2 ]

+�2[

2m+1∑

i=m+1

(
2m+1

i

)
�i
1�

2m+2�i
2 +

2m+1∑

i=m+1

(
2m+1
i

)
�i+1
1 �2m+1�i

2 ]

= �1[

m∑

i=0

(
2m+1

i

)
�i
1�

2m+1�i
2 (�2 + �1)] + �2[

2m+1∑

i=m+1

(
2m+1

i

)
�i
1�

2m+1�i
2 (�2 + �1)]

= �1[

m∑

i=0

(
2m+1

i

)
�i
1�

2m+1�i
2 ] + �2[

2m+1∑

i=m+1

(
2m+1

i

)
�i
1�

2m+1�i
2 ] = r2m+1(z): (49)

This completes the proof of part (a).

For the proof of part (b), we proceed as follows: From the equation (43), we express r2m+3(z) as

r2m+3(z) = �1

m+1∑

i=0

(
2m+3

i

)
�i
1�

2m+3�i
2 + �2

2m+3∑

i=m+2

(
2m+3

i

)
�i
1�

2m+3�i
2 : (50)
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Now using the identity (47), we rewrite the equation (50) as

r2m+3(z) = �1

m+1∑

i=0

[
(
2m+2

i

)
+
(
2m+2
i�1
)
]�i

1�
2m+3�i
2 + �2

2m+3∑

i=m+2

[
(
2m+2

i

)
+
(
2m+2
i�1
)
]�i

1�
2m+3�i
2

= �1[

m+1∑

i=0

(
2m+2

i

)
�i
1�

2m+3�i
2 +

m∑

i=0

(
2m+2

i

)
�i+1
1 �2m+2�i

2 ]

+�2[

2m+2∑

i=m+2

(
2m+2

i

)
�i
1�

2m+3�i
2 +

2m+2∑

i=m+1

(
2m+2

i

)
�i+1
1 �2m+2�i

2 ]

= �1[

m∑

i=0

(
2m+2

i

)
�i
1�

2m+2�i
2 (�2 + �1) +

(
2m+2
m+1

)
�m+1
1 �m+2

2 ]

+�2[

2m+2∑

i=m+2

(
2m+2

i

)
�i
1�

2m+2�i
2 (�2 + �1) +

(
2m+2
m+1

)
�m+2
1 �m+1

2 ];

so that

r2m+3(z) = �1[

m∑

i=0

(
2m+2

i

)
�i
1�

2m+2�i
2 ] + �2[

2m+2∑

i=m+2

(
2m+2

i

)
�i
1�

2m+2�i
2 ] + 2

(
2m+2
m+1

)
�m+2
1 �m+2

2 :(51)

By simplifying the last term in (51), we get an upper bound on it as (since �1 + �2 = 1 and

�1�2 <
1
4
always)

2
(
2m+2
m+1

)
�m+2
1 �m+2

2 = 2
(
2m+2
m+1

)
�m+1
1 �m+1

2 (�1�2) < 2
(
2m+2
m+1

)
�m+1
1 �m+1

2 (1
4
) = 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 (�1+�2):

(52)

In view of (51) and (52), we get the inequality

r2m+3(z) <�1[

m∑

i=0

(
2m+2

i

)
�i
1�

2m+2�i
2 ] + �2[

2m+2∑

i=m+2

(
2m+2

i

)
�i
1�

2m+2�i
2 ] + 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 (�1 + �2):

= �1[

m∑

i=0

(
2m+2

i

)
�i
1�

2m+2�i
2 + 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 ] + �2[

2m+2∑

i=m+2

(
2m+2

i

)
�i
1�

2m+2�i
2 + 1

2

(
2m+2
m+1

)
�m+1
1 �m+1

2 ]

= r2m+2(z)= r2m+1(z),

by (49). Thus, the proof of part (b) is complete.

Using parts (a) and (b) in the theorem, we can infer part (c) r2m+2 >r2m+4, m = 0; 1; 2; � � � .

This can be seen by applying in succession parts (a), then (b) and then (a) again as follows:

r2m+1 = r2m+2 > r2m+3= r2m+4. This completes the proof of the theorem.

Theorem 3.3 can be obtained from Theorem 3.2 by taking expectations wrt to the random variable Z

on both sides of the equality in part (a) and the inequality in part (b). The proofs given in Theorem

3.2 and Theorem 3.3 are new.

Theorem 3.3. The unconditional asymptotic risk R2(k) has the following properties:

(a) R2(2m + 1) = R2(2m + 2) for m = 0; 1; 2; � � �

(b) R2(2m + 1) > R2(2m + 3) for m = 0; 1; 2; � � �

In turn, the above (a) and (b) implies that R2(2m + 2) > R2(2m + 4)for m = 0; 1; 2; � � �

82



Gujarat Journal of Statistics and Data Science Vol. 38, pp. 72�86, 2022

P1

Feature# k !

1 2 3 4 5

X 1 36.0 35.3 35.1 34.3 33.0

X 2 48.7 52.3 50.0 54.0 46.3

X 3 5.3 5.4 4.7 5.0 4.7

X 4 5.3 4.3 4.7 4.7 4.7

P2

X 1 31.3 34.7 36.0 38.8 38.0

X 2 52.7 51.7 47.8 46.7 47.0

X 3 4.7 6.0 5.3 5.0 4.7

X 4 3.7 4.0 3.3 3.3 3.3

Table 1: Error rate (%) using each feature of the IRIS data (P1 and P2)

Devroye [4] provided an improved upper bound on the asymptotic risk of the k-NN rule. This is stated

in the following theorem.

Theorem 3.4. (Devroye, [4]). The unconditional asymptotic risk R2(k), k odd, has the following

bounds:

(i) R2(k) � (1 + ak)R
�, ak = �

p
k

k�3:25 + (1 + �p
k�3), k � 5 where � = 0:3399 and � = 0:9749;

(ii) R2(k) � (1 +
√

2
k
)R� for all k � 1; and (iii) R2(k) � (1 + 1p

k
)R� for k � 3.

Readers are referred to Devroye [4] for the proof of Theorem 3.4.

4 An Empirical Study (Bagui and Pal, [9])

The empirical behavior of the k-NN rule has been widely studied, and its performance is also well

known and well appreciated in the literature. But for the sake of completeness of the paper, we

present its performance outcome here on a very well-known data set, viz., Anderson's IRIS data

(Johnson and Wichern [5]). This data has become a benchmark for comparing various clustering

and classi�er designs. The IRIS data include observations from three species of iris - �1 :Iris setosa,

�2 :Iris versicolor, and �3 :Iris virginica - on four features X 1 = Sepal length, X 2 = Sepal width, X 3 =

Petal length, X 4 = Petal width for each of the three iris species. There are n1 = n2= n3= 50 sample

observations under each species �i , i = 1; 2; 3. The data set has 3 classes (species) of 50 instances

in 4-dimensional space each. The entire data set was partitioned into two disjoint sets � training and

test sets. We kept 75 observations in the training set, with 25 instances being drawn randomly from

each of the three species. Automatically, the test set will have the remaining 75 observations. We

make a run on it using the k-NN rule. We call it a forward run. Then we swap the test set with the

training set and make a run again using the k-NN rule. The latter one is called the reverse (backward)

run. The experiment was done on two di�erent partitions, P1 and P2. The error rates displayed in

the following tables, the averages of the forward and backward runs, are taken from Bagui and Pal

([9]). For the convenience of researchers in this area, we include the IRIS data in the Appendix.

5 Concluding Remarks

In fact, Fix and Hodges [3] (henceforth F&H [3]) classify Z to the population �1 if k1/n1 > ck2/n2
where the c depends on the classi�cation costs and prior probabilities. Their classi�cation rule is based
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k# P1 P2

1 4.0 5.3

2 2.0 18.7

3 6.7 3.3

4 6.7 4.7

5 4.0 3.3

Table 2: Error rate (%) using all features of the IRIS data (P1 and P2 )

on nearest neighbor density estimators. They showed that the rule is consistent with the likelihood

ratio approach. Silverman and Jones [1] revisited F&H [3] with a commentary on it for historical

reasons and contemporary relevance. If n1 = n2 or c = �̂2
/
�̂1 = [n2/(n1 + n2)]/[n1/(n1 + n2)]= n2/n1

then F&H's ([3]) rule reduces to Cover and Hart's [11] k-NN rule. This article revisits Cover and Hart

[11] (henceforth C&H [11]). It focuses on the asymptotic risk of both 1-NN and k-NN rules. C&H

[11] obtains bounds on the asymptotic risk (R2) of the 1-NN rule under a 2-population case which

is given by R�
2 � R2 � 2R�

2(1 � R�
2), where R�

2 is the (optimal) Bayes' risk under two populations.

Similarly, they also obtained bounds on the asymptotic risk (Rs) of the 1-NN rule under s-population

(s > 2) case, R�
s � Rs � R�

s (2 �
s

s�1R
�
s ). These famous bounds on NN classi�cation error rates

brought a lot of excitement to the classi�cation and machine learning community at the beginning of

the machine learning era. Hence C&H [11] was instrumental in popularizing the k-NN classi�cation

rule in the classi�cation and machine learning community. For the k-NN rule in the s = 2 population

case , we have given in this paper a di�erent proof that as k increases, the asymptotic risk (R2(k))

decreases; that is, a di�erent proof for the inequality R2(2m + 1) > R2(2m + 3), m = 0; 1; 2; � � � .

Devroye [4] (see Theorem 3.4) derived interesting (improved) upper bounds on the k-NN classi�cation

rule risk R2(k), in the s = 2 population case, for various ranges of values of k . C&H [11] results

- and their extensions and improvements - are not commonly known in the statistical community as

they are in the machine learning community. The main reason for revisiting C&H is [11] to represent

and popularize these remarkable results and their extensions in the statistical community.

The k-NN classi�cation methodology has also been studied in the extended context of correctly

classifying a set of multiple observations [6], known to have come from one and the same class,

among a set of s given classes by Bagui, Mehra and associates under varying scenarios. The interested

readers are referred hereby to Bagui et al. ([9],[8]), Bagui and Mehra [7] and Bagui et al. [10]. For

classifying a set of multiple observations as above to its correct parent category, Bagui et al. [8]

employed a NN classi�cation rule based on creating and utilizing as training samples all possible

sub-samples of the original training sample. The asymptotic risk of this method was shown to have

bounds similar to those of Cover and Hart [11] for a single observation. Bagui et al. [10] employed

an NN-type majority vote classi�cation rule and obtained lower and upper bounds on its risk in terms

of the optimal Bayes risk under a separate training sampling scheme. Bagui and Mehra [7] had earlier

also studied a Rank Nearest Neighbor (RNN)-type of classi�cation rule for correctly classifying a set

of multiple independent observations as above and derived suitable lower and upper bounds on its risk

in terms of Bayes risk.
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Appendix

Table 3: Data on Irises (Anderson (1939, [1]), Johnson and Wichern (2007, [10]), UCI Machine Learning Repository,

URL: https://archive.ics.uci.edu/ml/datasets/iris )

No. �1 : Iris setosa �2 : Iris versicolor �3 : Iris virginica

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1 5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5

2 4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9

3 4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1

4 4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8

5 5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2

6 5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1

7 4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7

8 5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8

9 4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8

10 4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5

11 5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0

12 4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9

13 4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1

14 4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0

15 5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4

16 5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3

17 5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8

18 5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2

19 5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3

20 5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5

21 5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3

22 5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0

23 4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0

24 5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8

25 4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1

26 5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8

27 5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8

28 5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8

29 5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1

30 4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6

31 4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9

32 5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0

33 5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2

34 5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5

35 4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4

36 5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3

37 5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4

Continued on next page
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Table 3 � continued from previous page

No. �1 : Iris setosa �2 : Iris versicolor �3 : Iris virginica

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

38 4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8

39 4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8

40 5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1

41 5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4

42 4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3

43 4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9

44 5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3

45 5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5

46 4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3

47 5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9

48 4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0

49 5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3

50 5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8
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Abstract
Moore-Penrose inverse of various matrices associated with a graph have been of considerable interest. In particular
a formula for the Moore-Penrose inverse of the incidence matrix of a tree has been known for more then twenty-five
years. We give a different approach to deriving the formula resulting in a more compact expression. Moore-Penrose
inverse of the Laplacian and the edge-Laplacian follow as consequences. We then consider the distance matrix
between the vertices and the edges of a tree and obtain a formula for its Moore-Penrose inverse.
Keywords: tree, incidence matrix, generalized inverse, Moore-Penrose inverse, vertex-edge incidence matrix
AMS Classification: 05C20, 05C50, 15A09

1 Introduction
The interplay between graphs and matrices is an active area of interest in the past few years and it is
interesting from theoretical as well as practical considerations. The area falls under the broad topic of
Algebraic Graph Theory. We refer to the books ([1],[4]) and [6] for more on this area.

There are various matrices associated with a graph, such as the incidence matrix. adjacency matrix,
Laplacian matrix, distance matrix and so on. We may investigate these matrices from a linear algebraic
or matrix theoretic point of view and inquire about their determinant, inverse, generalized inverse etc. It
turns out that many of these have purely graph theoretic descriptions and lead to attractive properties.

Matrices associated with trees have particularly nice properties. The incidence matrix of a directed
tree was considered in [2] where a formula for the Moore-Penrose inverse of the incidence matrix was
given. This paper has inspired considerable research and now formulas for a variety of matrices are known.
In this paper we give a different formula for the Moore-Penrose inverse which is much more concise than
the original formula which was descriptive. We also prove some related results. In the next section we
consider the distance matrix defined between vertices and edges of a tree and prove some properties. We
give a formula for the Moore-Penrose inverse of the matrix.

For basic notions in graphs and matrices we refer to [1]. The transpose of the matrix A is denoted by
A′. If A is a real m × n matrix then the n × m matrix G is called a generalized inverse of A if AGA = A.

Furthermore G is called Moore-Penrose inverse of A, denoted A+, if it satisfies GAG = G, (AG)′ = AG

and (GA)′ = GA. The Moore-Penrose inverse always exists and is unique. For generalized inverses
([3],[5]) are standard references.

2 Incidence matrix of a tree
Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set {e1, . . . , en−1}. We assume the edges
of T to be oriented and let Q be the vertex-edge incidence matrix, which is defined as follows. The rows

© 2022 Author(s). (https://www.thegsa.in/).
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and the columns of Q are indexed by the vertices and the edges of T, respectively. The (ej, i)-entry of Q

is 1 if ej originates at i, −1 if ej terminates at i, and zero otherwise. The matrix Q is n × (n − 1) and
has rank n − 1.

Let G be the (n − 1) × n 0 − 1 matrix defined as follows. Again the rows and the columns are
indexed by {e1, . . . , en−1} and V (T ) respectively. The (ej, i)-entry of G is 1(0) if ej is oriented away from
(towards) i.

Let P be the n × n projection matrix defined as P = I − 1
n
11′.

We remark that since a tree is a bipartite graph, the case of the incidence matrix of the unoriented, or
undirected, tree can easily be reduced to a directed tree by a similarity transformation. Then the formulas
for the unoriented case can easily deduced from those for the oriented case.

Example 1 Consider the tree

◦1
e1

!!B
BB

BB
BB

B ◦5

e4}}||
||
||
||

◦3

e2
}}||
||
||
||

e3 // ◦4 e5 //

e6

!!B
BB

BB
BB

B ◦6

2 ◦7

Then

Q =




1 0 0 0 0 0
0 −1 0 0 0 0

−1 1 1 0 0 0
0 0 −1 −1 1 1
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




, G =




1 0 0 0 0 0 0
1 0 1 1 1 1 1
1 1 1 0 0 0 0
0 0 0 0 1 0 0
1 1 1 1 1 0 1
1 1 1 1 1 1 0




.

In the next result we show that G is a left-inverse of Q, hence G is a generalized inverse of Q and
that GP is the Moore-Penrose inverse of Q.

Theorem 2.1. The following assertions are true:

(i) GQ = I. Hence QGQ = Q and G is a generalized inverse of Q.

(ii) The Moore-Penrose inverse of Q is given by Q+ = GP.

Proof. (i) Let ei and ej be edges of T, where ej has end-vertices u and v, and is directed from u to v.

The (ei, ej)-element of GQ is given by
n∑

w=1
g(ei, w)q(w, ej).

Note that q(u, ej) = 1, q(v, ej) = −1 and q(w, ej) = 0 if w ̸= u, w ̸= v. If ei ̸= ej, then either ei is oriented
away from both u and v, or is oriented towards both u and v. In the first case, g(ei, u) = g(ei, v) = 1,

whereas in the second case g(ei, u) = g(ei, v) = 0. In either case it follows that the (ei, ej)-element of
GQ is zero.

If ei = ej, then g(ei, u) = 1 and g(ei, v) = 0 and in this case, the (ei, ej)-element of GQ is 1. Thus
GQ = I.

(ii) The Moore-Penrose inverse of Q is given by G + X(I − QG) + (I − GQ)Y for some X and
Y. Since GQ = I, then Q+ = G + X(I − QG) for some X. We have 1′Q = 0 and hence Q′1 = 0.
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The matrix I − QG has rank 1 and since 1′ = 1′(I − QG), 1′ forms a basis for its row space. Thus
X(I − QG) = u1′ for some u. We now determine u.

We have Q+1 = G1 + u1′1 = G1 + nu, and since Q+1 = 0 we get u = −G1
n

. Thus
Q+ = G − 1

n
G11′ = G

(
I − 1

n
11′

)
= GP, and the proof is complete.

A formula for the Moore-Penrose inverse of Q was given in [2]. The formula in Theorem 2.1 is
equivalent but more concise. We describe the formula for completeness. The rows and the columns of Q+

are indexed by the edges and the vertices of T respectively. Let Th and Tt be the components of T \ ej,

where Th is closer to the head of ej and Tt is closer to the tail. If i ∈ Th (i ∈ Tt) then the (ej, i)-entry of
Q+ is |V (Tt)| (V (Th). The sign of the entry is positive (negative) if ej is oriented away from (towards) i.

Using this description we see that Q+ is given by

Q+ = 1
7




6. −1 −1 −1 −1 −1 . − 1
1 −6 1 1 1 1 1
4 4 4 −3 −3 −3 −3

−1 −1 −1 −1 6 −1 −1
1 1 1 1 1 −6 1
1 1 1 1 1 1 −6




.

It can be checked that this formula is identical to the one given in 2.1,(ii).
Let T be a tree and let Q be the incidence matrix of T. The matrix L = QQ′ is the Laplacian matrix

of T. It has the vertex degrees on the diagonal and the off-diagonal part is the negative of the adjacency
matrix. Since L = QQ′, we have L+ = (Q′)+Q+ = PG′GP, and this is more concise than formulas in
the literature ([9],[2])

The matrix K = Q′Q is termed the edge-Laplacian of the tree. Since rank K = rank Q = n − 1,
K is nonsingular. A formula for K−1 is given in [10]. Using Theorem 2.1 we get another formula,
K−1 = Q+(Q′)+ = GPG′.

In the next result we derive some further properties of G.
Let τi = 2 − δi, i = 1, . . . , n; and let τ be the n × 1 vector with components τ1, . . . , τn. Let D be the

distance matrix of the tree. The vector τ features in many formulas involving the distance matrix of T.

The distance matrix D of T is an n × n matrix with rows and columns indexed by the vertices and the
(i, j)-entry equal to the distance (i.e., the number of edges in the path) between i and j, if i ̸= j. If i = j,

then the distance between i and j is set to be zero, The following formulas due to Graham and Pollak [8]
and Graham and Lovász[7] are well-known and have had a lot of impact on research in this area.

Let T be a tree with n vertices. let D be the distance matrix of T and L the Laplacian of T. Then
det D = (−1)n−1(n − 1)2n−2 and

D−1 = −1
2L + 1

2(n − 1)ττ ′.

As seen from the Graham and Pollak formula, the determinant of the distance matrix of a tree depends
only on the number of vertices and not on the tree itself. This phenomenon has been shown to be true
for many other parameters associated with a tree. In fact, the number of edges in a tree with n vertices
is n − 1 and this is another example of the same phenomenon. In the next result we identify yet another
such parameter.

Theorem 2.2. The following assertions are true:

(i) Gτ = 1.
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(ii) GD−1G′ = −1
2

(
I − 1

n−111′
)

.

(iii) For the edge ej of T, let T1 and T2 be the components of T \{ej}. Let X be the principal submatrix
of D−1 indexed by the rows and the columns in V (T1). Then the sum of the elements of X is
− n−2

2(n−1) . (Thus the sum neither depends on the tree, nor on the order of X.)

Proof. (i) Let ej be an edge of T and let T1 and T2 be the components of T \ {ej}. We assume, without
loss of generality, that V (T1) = {1, . . . , m}. We also assume that m is an end-vertex of ej. The entry
of Gτ indexed by ej is given by ∑m

i=1 τi = ∑m
i=1(2 − δi) = 2m − ∑m−1

i=1 δi − (δm − 1) − 1. Note that
δ1, . . . , δm−1, δm − 1 are the degrees of all the vertices in T1, and hence their sum is 2(m − 1). It follows
that ∑m

i=1 τi = 1. Hence Gτ = 1.

(ii) We have

GD−1G′ = G

(
−1

2L + 1
2(n − 1)ττ ′

)
G′

= −1
2GLG′ + 1

2(n − 1)Gττ ′G′

= −1
2

(
I − 1

n − 111′
)

,

using (i) and the fact that GLG′ = GQQ′G′ = I.

(iii) The sum of the entries of X equals the (ej, ej)-element of GD−1G′, which by (ii) equals −1
2

times a diagonal element of
(
I − 1

n−111′
)

. The diagonal element is 1 − 1
n−1 and hence the sum of the

elements in X is − n−2
2(n−1) .

We obtain a further property of the matrix G. The result may be compared to the known statement
that d(i, j) = ℓ+

ii + ℓ+
jj − 2ℓ+

ij, see, for example, [[1]], Chapter 9.

Theorem 2.3. Let H = G′G and let D be the distance matrix of the tree T. Then

d(i, j) = hii + hjj − 2hij, i, j = 1, . . . , n.

Proof. Let i, j ∈ V (T ), i ̸= j. Let Ei(Ej) be the set of edges oriented away from i(j). Let T ′ be the
graph induced by the ij-path in T and let F i(F j) be the set of edges in T ′, oriented away from i(j). We
make some simple observations:

(i) F i ∩ F j = ϕ

(ii) F i = E(T ′) \ F j

(iii) Ei \ F i = Ej \ F j

(iv) hii = |Ei|, hjj = |Ej|, hij = |Ei \ F i|
It follows from (i)-(iv) that

hii + hjj − 2hij = |Ei| + |Ej| − |Ei \ F i| − |Ej \ F j|
= |F i| + |Ei \ F i| + |F j| + |Ej \ F j| − |Ei \ F i| − |Ej \ F j|
= |F i| + |F j|
= d(i, j),

and the proof is complete.
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3 Vertex-edge distance matrix of a tree
Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set {e1, . . . , en−1}. If ej is the edge with end-
vertices u and v, then the distance between a vertex i and ej is defined to be d′(i, ej) = 1

2(d(i, u)+d(i, v)).
The vertex-edge distance matrix E of T is the n × (n − 1) matrix with rows indexed by 1, . . . , n, columns
indexed by e1, . . . , en−1 and with the (i, ej)-entry equal to d′(i, ej).

Consider the tree
◦1

e1

BB
BB

BB
BB

◦5

◦3

e2
||
||
||
||

e3 ◦4

e4
|||||||| e5

e6

BB
BB

BB
BB

◦6

2 ◦7
Then

E = 1
2




1 3 3 5 5 5
3 1 3 5 5 5
1 1 1 3 3 3
3 3 1 1 1 1
5 5 3 1 3 3
5 5 3 3 1 3
5 5 3 3 3 1




.

Lemma 3.1. Let T be a tree with n vertices and let E be the vertex-edge incidence matrix of T. Then
E = 1

2DM, where D is the distance matrix of T and M is the 0 − 1 vertex-edge incidence matrix of T.

Proof. Let i ∈ V (T ) and let ej be an edge of T with end-vertices u and v. Then 2d′(i, ej) =
d(i, u) + d(i, v). The (i, ej)-element of DM is given by ∑n

k=1 d(i, k)m(k, ej) = d(i, u) + d(i, v) and
hence the result is proved.
Lemma 3.2. Let αi = ∑n

j=1 d(i, j) and let βi = ∑n−1
j=1 d′(i, ej). Then

αi = βi + n − 1
2 .

Proof. Since Dτ = (n − 1)1, then D(21 − δ) = (n − 1)1 and hence
Dδ = 2D1 − (n − 1)1. (1)

Since E = 1
2DM, we have E1 = 1

2DM1 = 1
2Dδ = D1 − n−1

2 1 by (1). Therefore D1 = E1 + n−1
2 1.

Comparing the i-th element on both sides we get the result.
Lemma 3.3. Let T be a tree with vertex set V (T ) = {1, . . . , n}, and let V (T ) = V1 ∪ V2 be the
bipartition of V (T ). Let x be a vector of order n × 1. Then

det[M, x] = ±

∑

i∈V1

xi −
∑

i∈V2

xi


 .

Proof. Orient each edge of T from V1 to V2. Let Q be the vertex-edge incidence matrix of T. Let S

be the n × n diagonal matrix with its i-th diagonal entry equal to 1(respectively, −1) according as
i ∈ V1(respectively, i ∈ V2.) Then note that Q = SM. Let Qi(respectively, Mi) be the submatrix of
Q(respectively, M) obtained by deleting the i-th row, i = 1, . . . , n. Recall that (−1)i det Qi has the same
sign for all i and equals ±1. It follows that (−1)i det Mi equals ±1 and has the same sign if i ∈ V1, and
the opposite sign if i ∈ V2. We get the result by expanding det[M, x] along the last column.
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Corollary 3.1. (i) det[M, τ ] = ±2(|V1| − |V2|).
(ii) det[E, 1] = ±1

2(|V1| − |V2|).
Proof. (i) We have

det[M, τ ] = ±

∑

i∈V1

τi −
∑

i∈V2

τi




= ±

∑

i∈V1

(2 − δi) −
∑

i∈V2

(2 − δi)



= ±2(|V1| − |V2|), since
∑

i∈V1

δi =
∑

i∈V2

δi,

and (i) is proved.
(ii) Note that [E, 1] = D[1

2M, 1
n−1τ ] and hence

det[E, 1] = 1
2n−1

1
n − 1(det D)(det[M, τ ]).

Since det D = (−1)n−1(n − 1)2n−2 and by (i), det[M, τ ] = ±(|V1| − |V2|) we get det[E, 1] =
±1

2(|V1| − |V2|) and the proof is complete.

We now provide a formula for the Moore-Penrose inverse of the vertex-edge distance matrix. As before,
let S be the signature matrix with its i-th diagonal entry equal to 1(−1) if i ∈ V1(i ∈ V2).
Theorem 3.2. Let v = D−1S1. Then
(i) G = M+D−1 is a generalized inverse of 2E.

(ii) The Moore-Penrose inverse of E is given by

E+ = 1
2M+D−1

(
I − vv′

v′v

)
.

Proof. (i) Let F = 2E. Since GF = M+D−1DM = M+M = I, then G is a left-inverse, and hence a
generalized inverse of F.

(ii) The Moore-Penrose inverse of F is given by G + X(I − FG) + (I − GF )Y for some X and Y.

Since GF = I, then F + = G + X(I − FG) for some X. We have v′DM = 1′SD−1DM = 1′SM = 0
and hence F ′v = 0. The matrix I − FG has rank 1 and since v′ = v′(I − FG), v′ forms a basis for its
row space. Thus X(I − FG) = uv′ for some u. We now determine u.

We have
F + = G + uv′ = M+D−1 + uv′.

Post-multiplying the preceding equation by v we get
F +v = M+D−1v + uv′v. (2)

Note that F ′v = 0, and since F ′ and F + have the same null space, F +v = 0. It follows from (2) that
u = −M+D−1v

v′v and hence

F + = M+D−1 − 1
v′v

M+D−1vv′ = M+D−1
(

I − vv′

v′v

)
.

Hence
E+ = 1

2M+D−1
(

I − vv′

v′v

)

and the proof is complete.

92



Gujarat Journal of Statistics and Data Science Vol. 38, pp. 87–94, 2022

Acknowledgement
The author acknowledges the support of the Indian National Science Academy, New Delhi, under the
INSA Senior Scientist scheme

References
[1] R.B. Bapat. Graphs and Matrices. Second. Hindustan Book Agency and Springer, 2014.
[2] R.B. Bapat. “Moore–Penrose inverse of the incidence matrix of a tree.” In: Linear and Multilinear Algebra

42 (1997), pp. 159–167.
[3] Adi Ben-Israel and Thomas N.E. Greville. Generalized Inverses. Theory and Applications. Second. New

York: Springer, 2003.
[4] Norman Bigs. Algebraic graph theory. Second. Cambridge: Cambridge University Press, 1993.
[5] S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformation. Pitman, 1979.
[6] Chris Godsil and Gordon Royle. Algebraic graph theory. New York: Springer–Verlag, 2001.
[7] R.L. Graham and L. Lovász. “Distance matrix polynomials of trees.” In: Adv. in Math. 29(1) (1978),

pp. 60–88.
[8] R.L. Graham and H.O. Pollak. “On the addressing problem for loop switching.” In: Bell. System Tech. J.

50 (1971), pp. 2495–2591.
[9] S.J. Kirkland, M. Neumann, and B.L. Shader. “Distances in weighted trees and group inverse of Laplacian

matrices.” In: SIAM J. Matrix Anal. Appl. 18(4) (1997), pp. 827–841.
[10] R. Merris. “An edge version of the matrix-tree theorem and the Wiener index.” In: Linear and Multilinear

Algebra 25 (1989), pp. 291–296.

93



Optimal Designs In An Irregular Design Space
Ravindra Khattree 1

1. Department of Mathematics and Statistics,Co-Director, Center for Data Science and Big Data Analytics, and

Participating Member, Center for Biomedical Research, Oakland University, Rochester, MI, 48309, USA; Email:

khattree@oakland.edu; ORCID ID: http://orcid.org/0000-0002-9305-2365.

Received: 28 Jan 2022 / Revised: 11 Jun 2022 / Accepted: 21 Jun 2022

Abstract

We provide two approaches to obtain optimum designs within an irregular design space. Basic idea is to obtain

a design by eliminating design points so that the reduce set of design points still well approximates the design

space. This is done by evaluating the eigen-structure of a speci�c matrix which is a function of corresponding

two design matrices. Our criteria for optimization of eigen-structure are based on smallest eigenvalues and

generalized antieigenvalues.

Keywords: Antieigenvalues, Eigen-structure, Eigenvalues, Generalized Antieigenvalue, Optimal Designs.

AMS Subject Classi�cations: 62K05, 62K20

1 Introduction

Professor C. G. Khatri's work on multivariate analysis and linear models had been a great source

of inspiration for me especially during my student days and in subsequent years it has had a great

in�uence on my work on multivariate and data analytics. While Professor Khatri and I had been in

occasional communications since my days at the Indian Statistical Institute, I had the opportunity to

meet him only once at the Joint Statistical meeting of the American Statistical Association at New

Orleans in August 1988 just a few months before his untimely passing in 1989. However, I still had

an opportunity to personally witness his genius, when I was informed sometimes in 1987 by Professor

C. R. Rao that one of my work with Professor R. D. Gupta which was sent to Professor Rao as a

�rst draft, had been further generalized within a span of few days by Professor C. G. Khatri. Our

subsequent brief collaboration resulted in [4] which de�nes a new very general class of multivariate

matrix distributions with certain attractive properties. With a feeling of admiration, I dedicate this

work to Professor C. G. Khatri to honor his legacy.

Coming to the main theme of this article, consider an experiment in four quantitative factors

x1 � x4; each taking values between 0 to 10: However one requires that for various levels of these

factors, we must have, x1 + x2 < 5:5; x3 + x4 > 5; x2 + x3 > 7 and x1 + x4 < 5: Such constraints

make the design space highly irregular. If one is looking for a design within this design space, either

these constraints should be introduced for optimization of the objective function, which can make the

problem highly complex and computationally intensive or alternatively, choose some heuristic approach

to come up with a design which can be nearly optimal. Certainly, from a practical point of view, this

second approach has much appeal and may be preferred. A way to accomplish this may be to generate

a �nite number of design points extensively covering this irregular design space and then choose a

desired number of points within this region under some meaningful optimality criterion.

The objective of this work is to introduce two such criteria which can be readily adopted to obtain

a design when the design space consists of a �nite number of potential design points. The basic idea

© 2022 Author(s). (https://www.thegsa.in/).
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is to rely on the eigen-structure of a function of design matrices and keep the eigen-structure of the

chosen design of size n as close to the eigen-structure of the design corresponding to the �nite design

space consisting of N design points as described above.

In general the design space D may be quite large. That is okay and in fact preferred. However,

for the example given above and for the sake of manageability of the data and tables, let us say that

the levels of each xi are allowed to be between 0 and 10 with an increment of 2. This results in

64 = 1296 design points out of which only N = 38 points satisfy the imposed constraints as described

above. These are given in Table 1 and a look at this table clearly shows that the design space is

highly irregular. Suppose we wish to choose a design consisting of only n = 18 design points. How

could we do that?

2 A Minimum Eigenvalue Based Formulation and A Few Matrix

Results

Consider the standard linear model set up. Let D be a �nite design space consisting of N design

points out of which we want to select a design D of size n for a linear model with p linear parameters.

We assume n > p. Let X be the N � p design matrix corresponding to design D and X1 be that of

size n � p obtained by retaining n design points from D and discarding (without loss of generality)

last r = N � n rows of design matrix X: Thus, X0 = (X1
0 : X2

0): We assume that both X as well as

X1 are of rank p. Also let A = X0X and B = X0

1X1: Clearly, p� p matrices A as well as B are also of

rank p.

Design x1 x2 x3 x4 Design x1 x2 x3 x4
Point Point

1 0 0 8 0 20 0 4 6 4

2 0 0 8 2 21 0 4 8 0

3 0 0 8 4 22 0 4 8 2

4 0 0 10 0 23 0 4 8 4

5 0 0 10 2 24 0 4 10 0

6 0 0 10 4 25 0 4 10 2

7 0 2 6 0 26 0 4 10 4

8 0 2 6 2 27 2 0 8 0

9 0 2 6 4 28 2 0 8 2

10 0 2 8 0 29 2 0 10 0

11 0 2 8 2 30 2 0 10 2

12 0 2 8 4 31 2 2 6 0

13 0 2 10 0 32 2 2 6 2

14 0 2 10 2 33 2 2 8 0

15 0 2 10 4 34 2 2 8 2

16 0 4 4 2 35 2 2 10 0

17 0 4 4 4 36 2 2 10 2

18 0 4 6 0 37 4 0 8 0

19 0 4 6 2 38 4 0 10 0

Table 1: Design Space D for a Generated Four Factor Design (N = 38).
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How do you �nd a good design within the space D? A meaningful approach may be to evaluate

how di�erent B is from A. If the discarded design points were not that important then we expect

B to resemble A in some meaningful sense � in our discussion in terms of their respective eigen-

structures.To assess this, let U be the upper triangular square root matrix of B such that B = U0U

and de�ne,

G = UA
�1
U
0: (1)

If A and B are similar in their eigen-structures then G must be nearly proportional to Ip; the

identity matrix of order p� p; and thus eigenvalues of G must be close to each other. The following

theorems (See [6]) show that the eigen-structure of G is pretty simple if r � p.

Theorem 2.1. Let �1 � �2 � ::: � �p be the ordered eigenvalues of G: Also let N � n = r � p: Then

�j = 1 for j = 1; 2; ::; (p � r):

Proof. Let X =

[
X1

X2

]
; where the order of X1 is n � p and the r � p matrix X2 contains the last r

rows of X: Then for A and B de�ned earlier, it is easily seen that,

A
�1 = (B+ X

0

2X2)
�1 = B

�1 � B
�1
X
0

2(Ir + X2B
�1
X
0

2)
�1
X2B

�1:

Thus from (1),

G = U[B�1 � B
�1
X
0

2(Ir + X2B
�1
X
0

2)
�1
X2B

�1]U0 = Ip � Z

where, Z = U0�1X0

2(Ir + X2(X
0

1X1)
�1X0

2)
�1X2U

�1 = U0�1X0

2(Ir + X2(U
�1U0�1)X0

2)
�1X2U

�1 =

W0(Ir + WW0)�1W; and where the r � p matrix W = X2U
�1 is of rank r: Therefore, the above

matrix Z has the last (p � r) eigenvalues as 0. Consequently, G = Ip � Z has the �rst (p � r)

eigenvalues as 1.

The above theorem suggests that as long as r < p, the e�ect of eliminating r design points

manifests only on the last r eigenvalues of matrix G: With r = 1; that is, when only one design point

is eliminated from D; this further simpli�es as shown in next theorem.

Theorem 2.2. Consider the matrix G when X2 = x0 is the Nth row of matrix X: Then the smallest

eigenvalue of G is given by

�p = 1� x
0(X0

X)�1x: (2)

Proof. In view of Theorem 1, it follows that only one of the eigenvalues of G matrix is not equal to

1 and thus �p = tr(G)� (p � 1): But, tr(G) = tr [U(X0X)�1U0] = tr [(X0X)�1U0U]

= tr [(X0X)�1B] = tr [(X0X)�1(X0X � xx0)] = tr(Ip) � x0(X0X)�1x: Thus, �p = tr(G) � p + 1 =

1� x0(X0X)�1x: This proves (2).

The e�ect of eliminating one design point is therefore given by 1 � x0(X0X)�1x: The quantity

x0(X0X)�1x can be recognized as the leverage of the i th design point and is proportional to the

variance function of x0i �̂ where �̂ is the least square estimator of the parameter vector �:

In the context of eliminating r design points, while still keeping r � p; a meaningful function

of last r eigenvalues of G may be used. With X0 = (X1
0 : X2

0);, it is easy to check that,

tr(G) = �p�r+1 + �p�r+2 + ::: + �p + (p � r) = tr [X1(X
0X)�1X0

1] = p � tr [X2(X
0X)�1X0

2]: Thus,

a meaningful measure can also be tr [X2(X
0X)�1X0

2]: A determinant may be an alternative possibility.

One may also argue that if a design point was not relevant then its elimination must not make any
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di�erence, in which case the smallest eigenvalue of G must equal 1. Thus a large value of the smallest

eigenvalue of G or its departure from unity can also be a meaningful criterion for the elimination of a

design point.

The following theorem will further help us devise a strategy to eliminate design points

systematically.

Theorem 2.3. With the set up as indicated earlier and with r � p,

i :tr(G) = p �

N∑

i=n+1

x
0

i(X
0
X)�1xi = p �

N∑

i=n+1

(1� �p;i) = (p � r) +

N∑

i=n+1

�p;i : (3)

i i :det(G) =
det(X1

0
X1)

det(X0X)
=

1

det(X2
0
X2 � X2

0(X1
0
X1)�1X2)

: (4)

Here xi is the i th design point, written as a column vector and �p;i is the smallest eigenvalue of Gi .

Further, the subscripted matrix Gi is same as the matrix G de�ned earlier when only the i th design

point xi is removed from the design space D:

Proof. It is easy to see that p = tr [(X0X)�1(X0X)] = tr(X(X0X)�1X0) = tr(X1(X
0X)�1X1

0) +

tr(X2(X
0X)�1X2

0) = tr(G) + tr(X2(X
0X)�1X2

0) = tr(G) +
∑N

i=n+1 x
0

i(X
0X)�1xi : This proves (3).

To prove (4), it su�ces to observe that det(G) = det(A�1B) = det(B)
det(A)

:

Thus tr(G) is basically, apart from a constant p�r , the sum of the smallest r = N�n eigenvalues,

where with i = 1; 2; � � � ; r each smallest eigenvalue corresponds to the instance i when i th design

point is eliminated, each time leaving the design with N � 1 design points. Clearly when r = p; that

constant p� r vanishes. This will form a basis for the quick removal of relatively unimportant design

points. In (4), we do notice that for a given D, the denominator of the middle expression is constant

and thus if one were to maximize the quantity in (4), the resulting design would be equivalent to a

d�optimal design within D:

Our various approaches are built around (1). Let D be a design and Dc be its complement within

D: There are NCn possible choices for D and in principle one would want to choose the �best" design

out of all these choices. However, under any chosen criterion for the best, with large values of N,

this is neither recommended nor always computationally feasible. Referring to our rather relatively

simple example in Table 1, with N = 38 and n = 18, we have NCn =38 C18 = 33; 578; 000; 610 �

3:3578� 1010 choices! We must thus devise some alternative strategy. In view of above results and

criterion stated therein, the following approaches may be suggested.

Approach 1: With r = 1; eliminate one design point at a time, each time taking the matrix X

to be the same N � p matrix and X1 to be an (N � 1)� p matrix. Compute the respective smallest

eigenvalues of matrices Gi : Our design D corresponds to those n design points which have smallest

values of the above and the remaining N � n design points constitute Dc :

Approach 2: With r = 1; eliminate one design point at a time to get the list of smallest

eigenvalues. After doing this, eliminate the design point with the highest value in the above list

from the design space, making the design space smaller in size by one design point. Continue this

process of elimination of successive design points from the reduced design spaces by using the largest

of the smallest eigenvalues as the criterion. After N�n eliminations, what is left is our chosen design.

Approach 3: This approach is a hybrid of the previous two and is based on Theorem 3, making

it easier and faster to implement. Note that the Theorem 3 requires r � p but N � n will usually

be larger than p: Thus the theorem cannot be directly applied. Instead, we eliminate in iterations,
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(r1 =) p design points, which can be done in one shot by eliminating those p design points which have

largest values of smallest eigenvalues. Since N � n may not be divisible by p, for the last iteration,

we must eliminate only t design points where N � n = t(mod(p)): Of course, in each iteration, the

design space loses p (or fewer in the last iteration) design points.

We will illustrate our Approach 3 via two data sets. Results of Approach 1 will be self evident from

the �rst list of smallest eigenvalues at the �rst step of our calculations of Approach 3. Approach 2

is straight forward but requires N � n calculations of X each of sizes decreasing by one row and then

subsequent calculations of A and Gi matrices. We will thus not elaborate on it. Our �rst data set is

for a particular mixture design which we will call as the Parshvanath Mixture design of size 20, while

the second illustration will be based on the data given in Table 1.

Design x1 x2 x3 x4 Design x1 x2 x3 x4
Point Point

1 7 12 1 14 11 2 12 15 5

2 2 13 8 11 12 1 11 6 16

3 16 3 10 5 13 12 8 5 9

4 9 6 15 4 14 2 3 15 14

5 7 2 16 9 15 6 10 11 7

6 12 13 3 6 16 16 13 1 4

7 1 8 10 15 17 7 12 10 5

8 14 11 5 4 18 1 14 16 3

9 7 13 10 4 19 2 13 15 4

10 9 3 8 14 20 8 11 9 6

Table 2: Parshvanath Design (N= 20) as Space D for a Four Factor Mixture Design (All entries must be divided

by 34 for mixture sum to be equal to 1).

Example 1 (Parshvanath Mixture Design) This mixture design along with many other larger

mixture designs upto size 52, was introduced by Khattree in several publications ([8], [5], [9]) and

was derived using the Parshvanath Yantram, a magic square inscribed at the entrance of ancient

Parshvanath Jain Temple in Khajuraho, Madhya Pradesh, India. This is also shown to be a constant

block-sum partially balanced incomplete block design when the mixture components are instead treated

as quantitative factors (See [11], [9]). The mixture design is presented in Table 2, except that each

entry must be further divided by 34 so that the sum of the mixture components is 1. However, for

our purpose, that divisor is irrelevant. We take the design given in Table 2 as our design space D

with N = 20 and suppose we want an optimal design D consisting of n = 10 design points under

Approach 3. Also, suppose, our model requires only a linear mixture. Clearly, since this corresponds

to a mixture experiment, the model will not have an intercept and thus the model is,

y = �1x1 + �2x2 + �3x3 + �4x4 + �:

Thus p = 4: Clearly N � n = 10 design points must be removed and therefore only three iterations

are needed to respectively eliminate (p =) 4, 4 and 2 design points from the design matrices X of

the successively changing sizes of 20� 4; 16� 4 and 12� 4: Table 3 presents the values of smallest

eigenvalues of various Gi matrices in increasing order after the �rst iteration. At this stage, four design

points with largest magnitudes of the smallest eigenvalue, namely, {15, 20, 17, 9} must be eliminated

thereby leaving us with the new reduced design space D(1) of sixteen design points. It can be veri�ed
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that with the newly obtained matrix G1 using the D(1) as design space, the design points {13, 2, 6

,8} are eliminated at the second iteration and �nally in the third iteration, another two design points

namely, {4, 11} are removed. The �nal design chosen is thus given by design points {1, 3, 5, 7, 10, 12,

14, 16, 18, 19}. Let Xopt be the 10� 4 design matrix of this chosen design and let Aopt = X0

optXopt :

The det(Aopt); tr(Aopt) and tr(A�1
opt) are respectively given as 1:3402�1011; 4076 and 0:008915: In

contrast, for the matrix Xremoved , the 10�4 design matrix consisting of ten eliminated design points,

their values are 3:3016 � 109; 3404 and 0:037174 respectively. Being of equal size, the two designs

can be compared. The �rst two measures are considerable larger in the former design compared to

the latter one and the third is much smaller, thereby also con�rming the superiority of the chosen

design with respect to other measures.

Removed x1 x2 x3 x4 Smallest Removed x1 x2 x3 x4 Smallest

Design Pt EValue Design Pt EValue

3 16 3 10 5 0.66357 4 9 6 15 4 0.80903

16 16 13 1 4 0.70015 11 2 12 15 5 0.82743

12 1 11 6 16 0.71215 6 12 13 3 6 0.82838

14 2 3 15 14 0.71696 8 14 11 5 4 0.82865

1 7 12 1 14 0.71793 2 2 13 8 11 0.84261

18 1 14 16 3 0.71824 13 12 8 5 9 0.87460

5 7 2 16 9 0.72922 9 7 13 10 4 0.88898

10 9 3 8 14 0.75575 17 7 12 10 5 0.91718

7 1 8 10 15 0.79504 20 8 11 9 6 0.93673

19 2 13 15 4 0.79548 15 6 10 11 7 0.94193

Table 3: Parshvanath Design (N= 20) Smallest Eigenvalue Calculations (Iteration 1).

Note that under Approach 1, the criterion would eliminate the last ten design points of Table 3

and retain the �rst ten as our chosen design. The �nal result turns out to be the same even though

values of smallest eigenvalues at various iterations would di�er.

Example 2 (A Generated Design with Four Factors) The design space given in Table 1 and

consisting of 38 design points is quite irregular. Suppose we wish to construct a suitable design

consisting of only 18 design points chosen from this design space by using the above criterion and for

the model with four factors and all �rst-order interactions,

y = �0 +
∑4

i=1 �ixi +
∑4

i=1

∑4
j>i �i jxixj + �:

There are eleven linear parameters in the model and thus p = 11: It is appropriate to standardize

the variables x1 � x4 to have zero mean and unit standard deviation and we de�ne the six interaction

terms as corresponding products after this standardization. As earlier, the method will require removal

of r1 = p = 11 design points in �rst iterations and the remaining r2 = 9 < p design points in the

second iteration. During the �rst iteration, the design points {11, 22, 14, 10, 12, 19, 2, 8, 27, 29,

25} have the highest values of the corresponding smallest eigenvalue and hence are eliminated. This

leaves us with a reduced design space of N1 = 27 design points. Another nine design points must

be discarded from this reduced design space to arrive at the �nal design. After Iteration 2, these are

found to be {20, 34, 33, 15, 23, 5, 13, 21, 16}. The �nally chosen design consisting of design points

{1, 3, 4, 6, 7, 9, 17, 18, 24, 26, 28, 30, 31, 32, 35, 36, 37, 38} is presented in Table 4. It can be

shown that the sum of all smallest eigenvalues must add to (n � p) which in our case for the resulting

design is equal to 7:
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Removed x1 x2 x3 x4 Smallest Removed x1 x2 x3 x4 Smallest

Design Pt EValue Design Pt EValue

26 0 4 10 4 0.06701 35 2 2 10 0 0.45077

24 0 4 10 0 0.13443 36 2 2 10 2 0.46571

17 0 4 4 4 0.16345 32 2 2 6 2 0.46894

4 0 0 10 0 0.29534 3 0 0 8 4 0.48267

6 0 0 10 4 0.29944 1 0 0 8 0 0.48580

18 0 4 6 0 0.31900 7 0 2 6 0 0.49796

37 4 0 8 0 0.36755 30 2 0 10 2 0.55784

38 4 0 10 0 0.36898 9 0 2 6 4 0.55932

31 2 2 6 0 0.44431 28 2 0 8 2 0.57148

Table 4: Chosen Design (n = 18) from Generated Design Space (N = 38) Smallest Eigenvalue Calculations.

3 A Criterion Based on Antieigenvalues

Let Cp�p be a real symmetric positive de�nite matrix and consider the quadratic surface, u0C�1u = �

where � is a known constant, in a p� dimensional space. Since C is positive de�nite, this represents

an ellipsoid and with an appropriate orthogonal rotation v = P0u where C = P�P0 is the spectral

decomposition of A; the surface can be represented as,

v
0��1v = � with � = diagonal(�1; �2; :::; �p)

or
v 21
�1

+
v 22
�2

+ :::+
v 2p
�p

= � where �1 � �2 � ::: � �p > 0:

The eccentricities of certain two dimensional elliptical cross-sections of this ellipsoid can be

quanti�ed in decreasing order as
√

�1
�p

�

√
�2

�p�1
�

√
�3

�p�2
� � � � : The quantity e1 =

√
�1
�p

is the

eccentricity measured respectively via the two most elongated and most compressed directions and

hence measures the extreme eccentricity. The next quantity e2 =
√

�2
�p�1

represents the comparison

of the next two most elongated and most compressed directions and similar comparisons continue

for [p=2] pairs where [p=2] is the integer part of p=2: Clearly, whenever �i is considerably larger

than �p�i+1; i = 1; 2; � � � ; [p=2]; ei will also be large, indicating a particular cross section of the

ellipsoid highly elongated. A one-to-one monotonically decreasing function of ei =
√

�i

�p�i+1
is the i th

antieigenvalue of the matrix C namely,

�i =
2
√
�i�p�i+1

�i + �p�i+1

=
2

ei + e�1i

; i = 1; 2; � � � ; [p=2]: (5)

The quantities 0 < �1 � �2 � ::: � 1 in (5) are ordered naturally by their magnitudes and

each �i de�ned above is a one-to-one monotonically decreasing function of corresponding ei . Being

a monotonic function of ei ; i = 1; 2; � � � ; [p=2], these also measure the eccentricities. Accordingly,

�i ; i = 1; � � � ; [p=2]; provide a way to measure the departure from sphericity of the corresponding

matrix C. Also, C and C�1 share the same set of antieigenvalues, a fact consistent with the parity of

sphericity of the two matrices.
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A single index of sphericity combining all antieigenvalues can be de�ned as the generalized

antieigenvalue (See [10], [7])

� =

[p=2]∏

i=1

2
√
�i�p�i+1

�i + �p�i+1

=

[p=2]∏

i=1

�i ; (6)

which is a function of all antieigenvalues and can be interpreted as an overall measure of eccentricity.

One may alternatively use the [p=2]th root of � in (6) which would then be the geometric mean of

all antieigenvalues. Venables in [17] uses the generalized antieigenvalue, although without using this

speci�c nomenclature, as a test statistic to test the sphericity of a covariance matrix. Also see the

classic textbook by Srivastava and Khatri [16] for the related discussion and [1], [12] for the extensive

work where the generalized antieigenvalue is shown to be an appropriate measure to quantify the

ine�ciency of a least square estimator under misspeci�cation of the model assumptions.

In our context, the matrix of interest is G de�ned in (1). Intuitively, if D is a good choice as a

representative of the entire design space D then X0

1X1 must be close enough, apart from a scaling

constant, to X0X in which case, we expect G to be nearly spherical. That it is so, can be assessed via

individual antieigenvalues or the generalized antieigenvalue de�ned above. Considering the latter as

the criterion, the problem then is to �nd the design D so that the generalized antieigenvalue of the

corresponding G matrix is maximum among all choices of possible designs of same size.

Clearly, there are NCn choices for possible designs and even for the moderate values of N and n,

as in our examples, the number of choices is excessively large. We must thus devise some algorithm

which even if not fully optimal, can provide some approximate solution. Approaches by several authors

(See [3], [13], [14], [15], [2]) involve a variety of exchange algorithms to do so. Our approach uses

the same idea but with the objective of optimizing the generalized antieigenvalue.

The basic exchange algorithm is given here. For a given initial partition {D; Dc} of D, initially

let the G0 be as de�ned in (1). We exchange one design point of D with another design point of Dc

and do so for all n� (N�n) pairs, each time computing the corresponding generalized antieigenvalue

of corresponding G matrix, say Gi ; at i
th iteration. If the largest value in the n � (N � n) matrix of

generalized antieigenvalues exceeds the largest obtained at the previous iteration, suggested exchange

is initiated and the algorithm proceeds to the next iteration. Otherwise the solution has been obtained

as the design D of immediate previous stage with largest value of generalized antieigenvalue. In

other words, the algorithm continues until we cannot improve the largest value of the generalized

antieigenvalue. With �nite choices, it is ensured that the algorithm must converge but a global

optimum cannot be assured. With practical limitations, it would be a good compromise to obtain

a nearly optimal solution, especially when our choice of initial design at the beginning was carefully

chosen. In our illustrative examples which follow, we have chosen the initial choice of designs as those

�nally obtained in the previous section.

Example 1 (Continued): We continue with the 20-point design space of Parshvanath and look

for a design D which is nearly optimal under our generalized antieigenvalue criterion. Whether to

choose G as de�ned in (1) or its inverse with square root matrix of X0X appropriately de�ned, is

immaterial since both choices lead to the same set of antieigenvalues. The exchange procedure as

described above will be applied to obtain a design with 10 design points. As the starting point, we

take the initial design as the one obtained in the previous section namely, D = {1, 3, 5, 7, 10, 12, 14,

16, 18, 19}. Accordingly, Dc = {2, 4, 6, 8, 9, 11, 13, 15, 17, 20}. The 10�10 matrix of generalized

antieigenvalues (not shown) when the i th design point of D is exchanged with the j th design point of

Dc is obtained and the corresponding choice (i1; j1) corresponding to the maximum value is identi�ed.

Speci�cally, design point 9 belonging to D is exchanged with the design point 10 belonging to Dc

thereby updating the sets D and Dc . This and subsequent iterations are described in Table 5 with
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Iteration Design Design Points Max Gen AntiEvalue

Initial D 1 3 5 7 10 # 12 14 16 18 19 0.94697

Dc 2 4 6 8 9 " 11 13 15 17 20

1 D 1 3 5 7 # 9 12 14 16 18 19 0.97713

Dc 2 4 6 8 10 11 13 15 17 20 "

2 D 1 3 5 20 9 # 12 14 16 18 19 0:98954

Dc 2 4 6 8 10 11 13 15 17 " 7

3 D 1 3 5 20 17 12 14 16 18 19 0.98945

Dc 2 4 6 8 10 11 13 15 9 7

Table 5: Design Derivation (n = 10) from Parshvanath Design Space (N = 20) Antieigenvalue Calculations

[Exchanged design points between D and Dc for the next iteration are highlighted in bold] and by #; " s:

D Dc

Design x1 x2 x3 x4 Design x1 x2 x3 x4
Point Point

1 7 12 1 14 2 2 13 8 11

3 16 3 10 5 4 9 6 15 4

5 7 2 16 9 6 12 13 3 6

9 7 13 10 4 7 1 8 10 15

12 1 11 6 16 8 14 11 5 4

14 2 3 15 14 10 9 3 8 14

16 16 13 1 4 11 2 12 15 5

18 1 14 16 3 13 12 8 5 9

19 2 13 15 4 15 6 10 11 7

20 8 11 9 6 17 7 12 10 5

Table 6: Designs D(n = 10) and Dc(N � n = 10) for the Parshvanath Design Space.

choices identi�ed in bold along with the direction of exchange indicated by # and " arrows. Upon

third iteration we observe that maximum of the generalized antieigenvalue does not further improve.

We thus accept the choice of iteration 2 as the �nally chosen design. See Table 6. It is easy to see

that the �nally obtained design under generalized antieigenvalue criterion is di�erent by two design

points from that obtained under minimum eigenvalue criterion (namely, the design points {9, 20} vs.

{7, 10}). The very high value of maximum antieigenvalue, close to 1 is a good assurance about the

quality of the chosen design.

Example 2 (Continued): Here we are looking for a design with 18 design points. For the model

considered, we have p = 11 and thus computations are more intensive. Nonetheless, following the

same approach with details shown in Table 7, we obtain the optimal design presented in Table 8, which

corresponds to iteration 3. One can also see in the illustration that a design point once leaving D can

again come back (Design point 28, in our case). The �nal design is di�erent from the initial design

again only in two design points namely, {23, 34} vs. {32, 36}. As earlier, maximum of generalized

antieigenvalue exceeds 0.95, which is deemed quite satisfactory.
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Iteration Design Design Points Max Gen AntiEvalue

Initial D 1 3 4 6 7 9 17 18 24 26 28 # 30 31 32 35 36 37 38 0.94697

Dc 2 5 8 10 11 12 13 14 15 16 19 20 21 22 23 " 25 27 29 33 34

1 D 1 3 4 6 7 9 17 18 24 26 23 30 31 32 35 36 # 37 38 0.95645

Dc 2 5 8 10 11 12 13 14 15 16 19 20 21 22 28 25 27 29 33 34 "

2 D 1 3 4 6 7 9 17 18 24 26 23 30 31 32 # 35 34 37 38 0.95713

Dc 2 5 8 10 11 12 13 14 15 16 19 20 21 22 28 " 25 27 29 33 36

3 D 1 3 4 6 7 9 17 18 24 26 23 30 31 28 35 34 37 38 # 0:95826

Dc 2 5 8 10 11 12 13 14 15 16 19 20 21 22 32 25 27 29 33 36 "

4 D 1 3 4 6 7 9 17 18 24 26 23 30 31 28 35 34 37 36 0.95826

Dc 2 5 8 10 11 12 13 14 15 16 19 20 21 22 32 25 27 29 33 38

Table 7: Design Derivation (n = 18) from the Generated Design Space (N = 38) Antieigenvalue Calculations

[Exchanged design points between D and Dc for the next iteration are highlighted in bold] and by #; " s.

4 Concluding Remarks

In this article we have introduced two new criteria to obtain the optimal designs based on the minimum

eigenvalue and generalized antieigenvalue of a certain matrix. In practice both criteria can be easily

implemented. It must be mentioned as an alternative interpretation that when we are looking at the

eigen-structure of matrix G; we are essentially considering the eigen-structure of X0

1X1 with respect to

X0X in the sense of determinantal equation det(X0

1X1��X0X) = 0: Further, since both criteria rely on

eigen-structures, the invariance with respect to orthogonal transformation of design points follows as

long as the irregular design space is de�ned by linear constraints. However, the two criteria introduced

here themselves are not equivalent since they respectively depend on eigenvalues and antieigenvalues

and as shown in (5), each antieigenvalue is a function of a pair of eigenvalues.

One of the referees asked if instead of Approach 1 described above, is it possible to start with a

random design with �xed number of design points and then interchange the points, using the Fedorov-

type exchange algorithm satisfying the criteria introduced here? Answer to this query is a de�nite

"Yes". However, exchange algorithms may require excessive computational resources especially when

N and/or n are large. That is especially so if we start with an initial random design. Our Approach 1

(and also Approach 2) circumvents this problem. Approach 3 essentially relies on an exchange- type

algorithm. However, as we have pointed out earlier, one can minimize the computational e�orts by

avoiding to initially start with a random design and instead choose the initial design carefully, such

as that generated by using our Approach 1. Our examples show that with some wise-choices of the

initial design, number of iterations to obtain the optimal designs can be substantially reduced.

The two data sets used here are only for the illustration purposes and thus purposely chosen to

have the design spaces of manageable sizes so as to be included as tables in their entirety. However,

approaches are valid and in fact, are more suitable when the design spaces are highly irregular for

theoretical developments of the algorithms and computations and are still very vast consisting of

thousands of potential design points. In experiments involving discrete choices and many other spatial

experiments such irregular design spaces are quite common. Thus, it is of interest to develop e�cient

algorithms for the approaches introduced here.

The matrix G de�ned in (1) plays the pivotal role in the approach described in this work. However,

there can be several variations to the criteria as well as to the algorithms. For example, the exchange

algorithm can as well be applied to minimum eigenvalue criterion. Likewise, in Section 3, instead of

generalized antieigenvalue, one could just use the smallest antieigenvalue as a criterion and maximize
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D Dc

Design x1 x2 x3 x4 Design x1 x2 x3 x4
Point Point

1 0 0 8 0 2 0 0 8 2

3 0 0 8 4 5 0 0 10 2

4 0 0 10 0 8 0 2 6 2

6 0 0 10 4 10 0 2 8 0

7 0 2 6 0 11 0 2 8 2

9 0 2 6 4 12 0 2 8 4

17 0 4 4 4 13 0 2 10 0

18 0 4 6 0 14 0 2 10 2

23 0 4 8 4 15 0 2 10 4

24 0 4 10 0 16 0 4 4 2

26 0 4 10 4 19 0 4 6 2

28 2 0 8 2 20 0 4 6 4

30 2 0 10 2 21 0 4 8 0

31 2 2 6 0 22 0 4 8 2

34 2 2 8 2 25 0 4 10 2

35 2 2 10 0 27 2 0 8 0

37 4 0 8 0 29 2 0 10 0

38 4 0 10 0 32 2 2 6 2

33 2 2 8 0

36 2 2 10 2

Table 8: Designs D(n = 18) and Dc(N � n = 20) for the Generated Four Factor Design Space.

it over all possible designs to obtain an optimal design. There is no reason, at least at this point,

to believe that one criterion or algorithm may be superior to another and only an extensive empirical

study could shed some light on such issues.
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Abstract
It is well known, due originally to C.R. Rao in early 1970s, that the best linear unbiased estimator, BLUE, of Xβ in
the linear model M = {y, Xβ, V} can be expressed in the form X(X′W−X)−X′W−y, where W is a specific
matrix of the form W = V+XTX′ with T satisfying the column space condition C (W) = C (X : V). We denote
this class of matrices as W. Choice of T as an identity matrix gives an obvious member W = V + XX′ ∈ W.
The matrices belonging to the class W have several interesting mathematical properties. In particular, the use of
matrix W ∈ W appears to be surprisingly handy and helpful tool when dealing with the linear statistical models.
Our aim is to review and collect together some essential features of W and its use in linear statistical models.
While doing this, we go through some related basic properties of the best linear unbiased estimation.
Keywords: Best linear unbiased estimator, BLUE, Column space, Generalized inverse, Löwner ordering,Linear
sufficiency, Partitioned linear model.
MSC: 62J05, 62J10

1 Introduction: Basic Tools
We begin this article by introducing the notation and the basic mathematical tools that we are going
to use; these matters will occupy the first two sections. In a nutshell, we slowly approach the problems
what we meet if we want to use a particular kind of estimator in the linear model to catch the best linear
unbiased estimator, BLUE, for the unknown parametric function. In our considerations the matrix of the
type W = V + XTX′, where X′ is the transpose of X, will have the main role. But before the main
goal, we need some basic tools and definitions.

In this article we consider the linear model y = Xβ + ε or shortly

M = {y, Xβ, V} .

Here y is an n-dimensional observable response variable, and ε is an unobservable random error with a
known covariance matrix cov(ε) = cov(y) = V (can be singular) and expectation E(ε) = 0 ∈ Rn. The
matrix X is a known n × p matrix, i.e., X ∈ R

n×p, and β ∈ R
p is a vector of fixed (but unknown)

parameters. We will denote µ = Xβ so that E(y) = µ = Xβ. Sometimes the covariance matrix is of
the type σ2V, where σ2 is an unknown positive constant.

© 2022 Author(s). (https://www.thegsa.in/).
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By the partitioned linear model we mean that y = X1β1 + X2β2 + ε, or shortly denoted

M12 = {y, Xβ, V} = {y, X1β1 + X2β2, V} .

In addition to the full model M12, we will consider the small models Mi = {y, Xiβi, V}, i = 1, 2, and
the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} ,

where M2 = In − PX2 , with PX2 being the orthogonal projector onto the column space of X2 and In

is the n × n identity matrix. Premultiplying the model M by an f × n matrix F yields the transformed
model

Fy = FXβ + Fε , or shortly T = {Fy, FXβ, FVF′} .

The reduced model M12·2 is of course one example of the transformed models. We will also shortly consider
the linear model with new (unobserved, to be predicted) observations. This means that in addition to
M , we are dealing with a q × 1 unobservable random vector y∗ containing new observations. These new
observations are assumed to come from y∗ = X∗β + ε∗ , where X∗ is a known q × p matrix, and ε∗ is a
q-dimensional random error vector whose (cross-)covariance matrix with y is known.

As for the notation: r(A), A−, A+, C (A), N (A), and C (A)⊥, denote, respectively, the rank,
a generalized inverse, the (unique) Moore–Penrose inverse, the column space, the null space, and the
orthogonal complement of the column space of the matrix A. By A⊥ we denote any matrix satisfying
C (A⊥) = C (A)⊥. Furthermore, we will write PA = PC (A) = AA+ = A(A′A)−A′ to denote the
orthogonal projector onto C (A). The orthogonal projector onto C (A)⊥ is denoted as QA = Ia − PA .

We will shorten our notation as

H = PX , M = In − PX , Mi = In − PXi
, i = 1, 2 .

One obvious choice for X⊥ is M.
Next we recall some basic concepts when dealing with the best linear unbiased estimation. In particular

we explore the problems when figuring out for which choice of matrix N ∈ Rn×n an estimator of the type

Xb = X(X′NX)−X′Ny

provides a representation for the best linear estimator, BLUE, of Xβ. Notice that the above representation
can be interpreted to arise from solving b from

X′NXb = X′Ny, (1)

supposing that (1) is solvable for b; this happens if and only if X′Ny ∈ C (X′NX). We will go through
various particular choices of N:

• the first and simplest case is N = In ,

• then we take N = V−1, and N = V+, or N = V−, i.e., N ∈ {V−},

• and so we slowly approach the most general case which is N = W− = (V + XTX′)−, where W
belongs to a specific class W , say.
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A linear statistic By is said to be a linear unbiased estimator, LUE, for Kβ, where K ∈ R
k×p, if its

expectation is equal to Kβ, i.e.,

E(By) = BXβ = Kβ for all β ∈ Rp, i.e., BX = K .

When C (K′) ⊆ C (X′) holds, Kβ is said to be estimable. The LUE By is the best LUE, BLUE, of
estimable Kβ if By has the smallest covariance matrix in the Löwner sense among all linear unbiased
estimators of Kβ:

cov(By) ≤L cov(B#y) for all B# : B#X = K ,

that is, cov(B#y) − cov(By) is nonnegative definite for all B# : B#X = K.

Under the model M , the ordinary least squares estimator, OLSE, for β is the solution minimizing the
quantity ∥y − Xβ∥2 with respect to β yielding to the normal equation X′Xβ = X′y. Thus, if X has full
column rank, the OLSE of β is β̂ = (X′X)−1X′y = X+y. Moreover, the OLSE of µ = Xβ is

OLSE(Xβ) = X(X′X)−X′y = XX+y = PXy = Hy = µ̂ .

Obviously µ̂ = Hy is a LUE for Xβ; however, µ̂ is the BLUE for Xβ only under specific conditions. Now
the well-known simple version of the Gauss–Markov theorem says that under the model MI = {y, Xβ, In},
the OLSE of Xβ is the BLUE of Xβ, or shortly

µ̂(MI) = OLSE(Xβ | MI) = BLUE(Xβ | MI) = µ̃(MI) . (2)

Consider now the model M where V is positive definite, and suppose that V1/2 is the positive definite
square root of V. Premultiplying M by V−1/2 yields M# = {V−1/2y, V−1/2Xβ, In}. In light of (2),
the BLUE of Xβ under M# equals the OLSE under M# and thus

BLUE(Xβ | M#) = µ̃(M#) = X(X′V−1X)−X′V−1y =: PX;V−1y,

where PX;V−1 is the orthogonal projector onto C (X) when the inner product matrix is V−1. It appears
that

PX;V−1y = BLUE(Xβ | M ) = BLUE(Xβ | M#) . (3)
The result (3), sometimes referred to as the Aitken-approach, is well known in statistical textbooks; see
Aitken (1935) [1].

It is clear that

min
β

(y − Xβ)′V−1(y − Xβ) = (y − PX;V−1y)′V−1(y − PX;V−1y)

= (y − Xβ0)′V−1(y − Xβ0) ,

where β0 is any solution to the generalized normal equation

X′V−1Xβ = X′V−1y. (4)

Equation (4) is always, i.e., for any y ∈ R
n, solvable for β and the general solution can be expressed,

e.g., as

β0 = (X′V−1X)−X′V−1y + [Ip − X′V−1X(X′V−1X)+]t
= (X′V−1X)−X′V−1y + (Ip − PX′)t ,
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where t ∈ Rp is free to vary. Thus

Xβ0 = X(X′V−1X)−X′V−1y = PX;V−1y.

What about if V is singular? Can we straight away replace V−1 with V+ or even with an arbitrary
generalized inverse V−? No, we better be careful: we need further information before such replacement
can be done.

What happens if we try to use

PX;V+y := X(X′V+X)−X′V+y

as a BLUE? First we observe that PX;V+y is a LUE for Xβ if and only if

X(X′V+X)−X′V+X = X ,

which, by Proposition 1.1 below, holds if and only if C (X′) ⊆ C (X′V+) = C (X′V), which further is
equivalent to each of the following conditions:

C (X′) = C (X′V) , r(X) = r(X′V) , C (X) ∩ C (V)⊥ = {0} . (5)

Above we have used the rank rule of the matrix product

r(AB) = r(A) − dim C (A′) ∩ C (B)⊥. (6)

From (5) we observe that if C (X) ⊆ C (V), then PX;V+y is unbiased for Xβ. The model M =
{y, Xβ, V}, where C (X) ⊆ C (V), is often called a weakly singular linear model. We observe that under
a weakly singular linear model the product X(X′V+X)−X′V+ is invariant for any choice of (X′V+X)−

in view of the following Proposition, cf. [41, Lemma 2.2.4].

Proposition 1.1. For nonnull matrices A and C the following holds:

(a) AB−C = AB+C for all B− ⇐⇒ C (C) ⊆ C (B) & C (A′) ⊆ C (B′).

(b) AA−C = C for some (and hence for all) A− ⇐⇒ C (C) ⊆ C (A).

(c) C′A−A = C′ for some (and hence for all) A− ⇐⇒ C (C) ⊆ C (A′).

Things become a bit trickier when we consider an estimator like

PX;V−y := X(X′V−X)−X′V−y,

where V− is a given generalized inverse of V. Supposing that C (X) ⊆ C (V) we see that the observed
value of PX;V−y is invariant for V− if and only if y ∈ C (V). Do we know that this holds? The answer
is yes in the case of a consistent linear model by which we mean such a model where the observed value
of y belongs to C (X : V):

y ∈ C (X : V) = C (X) ⊕ C (VM) = C (X)� C (MV) , (7)

where “⊕” refers to the direct sum and “�” to the direct sum of orthogonal subspaces. For decompositions
in (7), see [37, Lemma 2.1]. The models we consider are assumed to be consistent in the sense of (7) and
sometimes we use phrase “y belongs to C (X : V) with probability 1, or shortly w.p. 1”. For consistency,
see, e.g., [8].
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There is a related decomposition, see, e.g., [35, Th. 8]: for any conformable matrices A and B we
have

C (A : B) = C (A : QAB) , and thereby P(A:B) = PA + PQAB . (8)
Thus if X = (X1 : X2) and

M = In − P(X1:X2) = In − (PX2 + PM2X1) = M2QM2X1 ,

and by (6),
r(M2X1) = r(X1) − dim C (X1) ∩ C (X2) .

As for the structure of the paper, in the next section we recall the fundamental BLUE equation
which literally has a fundamental role for our considerations. In Section 3 we go through some
mathematical properties of the so-called W-matrices, i.e., the class W , and in Section 4 we introduce
some representations of the BLUEs. The use of the class W in the partitioned model is explored in
Section 5. Sections 6 and 7 are devoted to particular properties of the perp-operator ⊥ and for the linear
sufficiency, respectively. In Section 8 we deal with the equality of the BLUEs under two models and in
the last section we briefly discuss the model with new future observations. This paper is a review paper
containing no essentially new results. However, we believe that our review provides a useful summary of
the its area and thereby increases the insights and appreciation to the presented approach to best linear
unbiased estimation.

2 The Fundamental BLUE Equation
In what follows, we frequently refer to the following Proposition, sometimes called the fundamental BLUE
equation, see, e.g., Drygas [11, p. 55], Rao [38, p. 282], and Baksalary [2].

Proposition 2.1. Consider the linear model M = {y, Xβ, V}. Then Gy is the BLUE for µ = Xβ if
and only if G satisfies the equation

G(X : VX⊥) = (X : 0) . (9)

The corresponding condition for By to be the BLUE of an estimable Kβ is

B(X : VX⊥) = (K : 0) . (10)

Proposition 2.1 offers an extremely handy tool to check whether a given estimator is a BLUE. Moreover,
it provides a convenient way to introduce various representations for the BLUE. Equation (9) is always
solvable for G while (10) is solvable for B if and only if Kβ is estimable. The solutions are unique if and
only if C (X : VX⊥) = R

n. As said, one choice for X⊥ is M = In − PX. We can define the set {Pµ|M }
as follows:

G ∈ {Pµ|M } ⇐⇒ G(X : VM) = (X : 0) .

If G0 is one particular solution for (9) then the general solution can be expressed as

G0 + E(In − P(X:V)) ,

where E ∈ Rn×n is free to vary.
We see at once that under a weakly singular linear model we have

PX;V+(X : VM) = X(X′V+X)−X′V+(X : VM) = (X : 0) ,
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and it actually appears that

X(X′V+X)−X′V+y = BLUE(Xβ) ⇐⇒ C (X) ⊆ C (V) ;

see [44, Cor. 1.1] and [34, p. 286]. Moreover, if C (X) ⊆ C (V), then for any V−,

PX;V−y = X(X′V−X)−X′V−y = BLUE(Xβ) ,

and PX;V−y is invariant for all generalized inverses involved assuming that the model is consistent.
Following Rao (1971) [40, Sec. 4] we can consider a matrix W defined as

W = V + XUU′X′ ∈ NNDn ,

where NNDn stands for the set of nonnegative definite (symmetric) n × n matrices and U ∈ R
p×s (for

some s) is such that C (W) = C (X : V); then we may denote W ∈ W≥. A more general class is such
where

W = V + XTX′ ∈ Rn×n,

with T being any p × p matrix such that C (W) = C (X : V). The set of such matrices W will be
denoted as W . Consider then the estimator

PX;W−y = X(X′W−X)−X′W−y, where W ∈ W .

Now by Proposition 1.1, X′W−X is invariant for the choice of the generalized inverse of W if and only if

C (X) ⊆ C (W′) and C (X) ⊆ C (W) . (11)

It can be shown that
C (W′) = C (W) , (12)

and thereby (11) holds, because assumption C (W) = C (X : V) obviously implies C (X) ⊆ C (W).
Using Proposition 1.1 we can conclude that PX;W−y is invariant for any choice of generalized inverses
involved supposing that the model is consistent.

We further observe that PX;W−(X : VM) = (X : 0) can be written as

X(X′W−X)−X′W−(X : WM) = (X : 0) , (13)

where the second part PX;W−WM = 0 holds in light of (11). By Proposition 1.1, the first part of (13),

X(X′W−X)−X′W−X = X (14)

holds if and only if C (X′) ⊆ C [X′(W−)′X], i.e.,

r(X) = r[X′(W−)′X] = r(X′W−X) . (15)

The above equality holds in view of

r(X′W−X) = r[X′W−(X : WM)] = r(X′W−W) = r(X) ,

where we have used the assumption C (X) ⊆ C (W′). Thereby, under the model M = {y, Xβ, V},

X(X′W−X)−X′W−y = BLUE(µ | M ) , i.e., PX;W− ∈ {Pµ|M } . (16)
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There is one interesting approach to demonstrate the usefulness of matrix W ∈ W≥. Namely it is
clear that

G(X : VM) = (X : 0) ⇐⇒ G(X : WM) = (X : 0) ,

where W = V + XUU′X′ ∈ W≥ . Observing that MW = {y, Xβ, W} is a weakly singular linear model
we can conclude that

X(X′W−X)−X′W−y = BLUE(Xβ | MW) = BLUE(Xβ | M ) . (17)

For (17) see also [9, Th. 10.1.3].
After this longish Introduction to Basic Tools and the Fundamental BLUE Equation, we will focus in

more details on the properties of matrix which is of type W and its usage in BLUE-related matters. It
appears to be surprisingly useful and powerful tool when dealing with linear statistical models.

3 Properties of the Class W
For a given linear model M = {y, Xβ, V}, let the set W of n × n matrices be defined as

W =
{
W ∈ Rn×n : W = V + XTX′, C (W) = C (X : V)

}
. (18)

In (18), T can be any p×p matrix as long as C (W) = C (X : V) is satisfied. It is clear that we can always
choose T = α2In, where α is an arbitrary nonzero scalar. Moreover, V ∈ W if and only if C (X) ⊆ C (V).
If there is a need to emphasize that there is a particular model M , say, under consideration we will use
notation W(M ). Sometimes we use the phrases like “A is a W-matrix” indicating that A ∈ W .

Choosing T in (18) nonnegative definite, i.e., putting T = UU′ (for some U), we get the set W≥ of
nonnegative definite matrices defined as

W≥ =
{
W ∈ NNDn : W = V + XUU′X′, C (W) = C (X : V)

}
. (19)

In (19), U can be any matrix comprising p rows so that C (W) = C (X : V) is satisfied. Using W≥
instead of W some considerations can become simpler, as can be expected.

Proposition 3.1 collects together some important properties of the class W ; see, e.g., [35, Prop. 12.1].

Proposition 3.1. Let V be an n × n nonnegative definite matrix, let X be an n × p matrix, and define
W as W = V + XTX′, where T is a p × p matrix. Then the following statements are equivalent:

(a) C (X : V) = C (W) ,

(b) C (X) ⊆ C (W) ,

(c) r(X : V) = r(W) ,

(d) X′W−X is invariant for any choice of W−,

(e) C (X′W−X) is invariant for any choice of W−,

(f) C (X′W−X) = C (X′) for any choice of W−,

(g) r(X′W−X) = r(X) irrespective of the choice of W−,

(h) r(X′W−X) is invariant with respect to the choice of W−,
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(i) X(X′W−X)−X′W−X = X for any choices of W− and (X′W−X)−.

Moreover, each of these statements is equivalent to

(a’) C (X : V) = C (W′),

and hence to the statements (b’)–(i’) obtained from (b)–(i), by setting W′ in place of W.

Shortly said, given the model M = {y, Xβ, V}, W ∈ W(M ) if and only if any of the conditions
in Proposition 3.1 holds. Observe that the invariance properties in (f)–(i) concern also the choice of
W ∈ W ; not only its generalized inverse. Actually, we will return to this property in due course.

As references to Proposition 3.1, in addition to [40, Sec. 4], we may mention, e.g., [6, Th. 1], [7,
Th. 2], [5, Th. 2], [14, p. 468], and [35, Sec. 12.3].

Notice that the equivalence of (g) and (h) of Proposition 3.1, is the same as that between (14) and
(15). Moreover, we can conclude that the statement

PX;W− ∈ {Pµ|M } for any choices of W− and (X′W−X)− (20)

is equivalent to the conditions in Proposition 3.1.
Let’s take a quick look at some some developments of the equivalence of the statements of Proposition

3.1; see, in particular, Baksalary & Mathew (1990) [5, Sec. 3]. Consider the model M = {y, Xβ, V},
and the following generalized normal equation:

X′AXβ = X′Ay, (21)

where A is a given n × n matrix. If A is nonnegative definite (and symmetric) then (21) has a solution
for β for every y and the solution minimizes

(y − Xβ)′A(y − Xβ) = ∥y − Xβ∥2
A .

Rao (1971) [40, p. 372] pointed out that we can consider a more general class of matrices A by
allowing A to be any matrix for which β is solvable from (21). Assuming that the model M is
consistent, i.e., y ∈ C (X : V), we observe that (21) is solvable for any y ∈ C (X : V) if and only
if X′A(X : V)t ∈ C (X′AX) for all t ∈ Rn+p, i.e.,

C (X′AV) ⊆ C (X′AX) . (22)

Rao [40, Th. 4.2] showed that if (22) holds, then for any solution β0 of (21) the estimator Xβ0 is the
BLUE of Xβ if and only if A is of the form

A = (V + XTX′)− + J , (23)

and satisfies the equality r(X′AX) = r(X), with T and J being arbitrary matrices such that

C (X : V) = C (V + XTX′) = C (V + XT′X′) , (24)

and X′J(X : V) = (0 : 0). Baksalary & Puntanen (1989) [6, Th. 1] proved that the condition (24) may
be simplified because

C (X : V) = C (V + XTX′) ⇐⇒ C (X : V) = C (V + XT′X′) ,
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c.f. (12), and that, under (24) the condition r(X′AX) = r(X) is redundant since for every A of the form
(23):

C (X : V) = C (V + XTX′) =⇒ r(X′AX) = r(X) . (25)
Baksalary et al. [7, Th. 2], showed that the implication (25) may be reversed, in the sense that if

r[X′(V + XTX′)−X] = r(X) for every (V + XTX′)− (26)

then C [X′(V + XTX′)−X] = C (X : V); this confirms the equivalence of (f) and (g) in Proposition 3.1.
Moreover, they raised the question whether it is possible to relax the condition (26) by requiring only that

r[X′(V + XTX′)−X] is invariant for every (V + XTX′)−. (27)

Baksalary & Mathew [5, Th. 2] showed that the answer is positive to this question; thus (g) and (d) in
Proposition 3.1 are equivalent.

4 Representations of the BLUE
In this section we present an important matrix decomposition in Proposition 4.1 and some its consequences.
Before it, however, a few words about the matrix M(MVM)−M which we denote as

Ṁ = M(MVM)−M .

The matrix Ṁ is not necessarily unique for any (MVM)−; it is unique if and only if r(X : V) = n.
However, we always have

M(MVM)+M = (MVM)+M = M(MVM)+ = (MVM)+.

In particular, for a positive definite V we have, for any (MVM)−,

M(MVM)−M = V−1/2PV1/2MV−1/2

= V−1/2(In − P(V1/2M)⊥)V−1/2

= V−1 − V−1X(X′V−1X)−X′V−1,

where we have used the obvious fact C (V1/2M)⊥ = C (V−1/2X).

Proposition 4.1. Consider the linear model M = {y, Xβ, V}. Let T be any p × p matrix such that
the matrix W = V + XTX′ satisfies the condition C (W) = C (X : V), i.e., W ∈ W(M ), and denote
Ṁ = M(MVM)−M. Then

(a) PWM(MVM)−MPW = W+ − W+X(X′W−X)−X′W+,

(b) PWM(MVM)−MPW = (MVM)+ = PWṀPW ,

(c) PX;W+ = X(X′W−X)−X′W+ = PW − VM(MVM)−MPW ,

(d) PX;W+ ∈ {Pµ|M } .

For the proof of (a), see [35, Prop. 15.2] and [22, Cor. 2.2]. Some related considerations (in full rank
case) appear also in [28, pp. 415–416] and [26, pp. 323–324].

We observe that in light of (8) we have

PW = PX + PMV = H + PMVM ,
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which implies (b) of Proposition 4.1. Premultiplying (a) by W and using C (X) ⊆ C (W′) = C (W) gives
X(X′W−X)−X′W+ = PW − VM(MVM)−MPW

= (In − VṀ)PW . (28)
From (28) we immediately confirm that X(X′W−X)−X′W+ is invariant with respect to the choice of
W ∈ W as was pointed out in the context of Proposition 3.1.

Premultiplying (28) by H = PX gives further expressions:
PX;W+ = X(X′W−X)−X′W+

= PW − VM(MVM)−MPW

= PW − V(MVM)+

= H − HVM(MVM)−MPW

= H − HVM(MVM)+M . (29)
It is worth emphasizing that in (28) and (29) we use the Moore–Penrose inverse A+, wherever it is marked
while the notation A− means that we can use any generalized inverse.

As we have already in (16) observed we have under M

PX;W−y = X(X′W−X)−X′W−y = BLUE(Xβ) = µ̃ .

Notice that X(X′W−X)−X′ is invariant with respect to the choice of generalized inverses involved and
PX;W+ = X(X′W+X)+X′W+ = X(X′W−X)−X′W+

for any choice of W− and (X′W−X)−.
From (29) we can conclude that under the consistent model M , i.e., assuming that y ∈ C (W) =

C (X : V),
µ̃ = X(X′W−X)−X′W−y = y − VM(MVM)−My = Hy − HVM(MVM)−My,

and
y − µ̃ = VM(MVM)−My = ε̃ = BLUE’s residual. (30)

The covariance matrix of the µ̃ = BLUE(Xβ) can be expressed as
cov(µ̃) = HVH − HVM(MVM)−MVH

= cov(Hy) − HVM(MVM)−MVH ,

as well as cov(µ̃) = V − VM(MVM)−MV. Notice that
cov(µ̂ − µ̃) = cov(µ̂) − cov(µ̃) = HVM(MVM)−MVH .

Postmultiplying (28) by W yields
X(X′W−X)−X′ = W − VM(MVM)−MV

and thereby the BLUE’s covariance matrix has a representation
cov(µ̃) = X(X′W−X)−X′ − XTX′. (31)

The form (31) was first expressed, using T = α2In, by Rao (1971) [40, p. 382] and Rao & Mitra (1971)
[41, p. 289]. Rao [40, p. 384–385] pointed out the use of W ∈ W with condition C (W′) = C (X : V),
which, as stated earlier, is actually not needed. For further references regarding the cov(µ̃), see, e.g., [7]
and [22, 23].
Remark 1. The referee of our paper interestingly commented as follows:
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For singular models where we use the matrix W to get representations for the BLUE of
µ = Xβ, the covariance matrix is a somewhat lengthy matrix expression, not as elegant as
the expression given above for a nonsingular V. For singular models, are there some choices
of W that gives some elegant simplifications for the covariance matrix of the BLUE of µ?

Indeed, for a positive definite V we can choose W = V and thus (31) gives the well-known formula
cov(µ̃) = X(X′V−1X)−X′. Similarly, for a weakly singular linear model, i.e., when C (X) ⊆ C (V), we
can again choose W = V and obtain

cov(µ̃) = X(X′V−X)−X′.

But for the question of further choices of W yielding elegant simplifications we are afraid that we must
raise our hands and postpone it for further research. However, as pointed out by Rao (1978) [36], missing
the role of the matrix T in (31) can yield wrong results. Rao points out that the choice of T = α2Ip has
some advantages, like even if V is singular, the matrix W = V + α2XX′ may be positive definite.

There is a related curious problem: suppose W is defined as

W = V + XUU′X′ = (V1/2 : XU)(V1/2 : XU)′,

so that C (W) = C (X : V). What is the choice for U making W− to be also a generalized inverse of
V, i.e.,

V(V + XUU′X′)−V = V.

Groß [12] showed that one such choice is U = X+(In − PV). For related discussion, see also [32].

The ordinary, unweighted sum of squares of errors SSE is defined as

SSE(I) = min
β

∥y − Xβ∥2 = y′My ,

while the weighted SSE, when V is positive definite, is

SSE(V) = min
β

∥y − Xβ∥2
V−1 = ∥y − PX;V−1y∥2

V−1

= y′[V−1 − V−1X(X′V−1X)−X′V−1]y
= y′M(MVM)−My = y′Ṁy .

In the general case, the weighted SSE can be defined as

SSE(W) = (y − µ̃)′W−(y − µ̃) ,

where W ∈ W . Then, recalling that by (30), the BLUE’s residual is ε̃ = y − µ̃ = VṀy, we observe
the following:

SSE(W) = ε̃′W−ε̃ = ε̃′V−ε̃ = y′Ṁy
= y′[W− − W−X(X′W−X)−X′W−]y.

It can be further shown that under M = {y, Xβ, σ2V}, SSE(W) provides an unbiased estimator of σ2:

E(y′Ṁy/f) = σ2, where f = r(VM) .
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Remark 2. Baksalary et al. (1990) [7, Th. 3] considered the model M = {y, Xβ, V} and proved that
if W = V + XTX′ ∈ W(M ) then the equality

W = VB(B′VB)−B′V + X(X′W−X)−X′ (32)

holds for a matrix B if and only if

C (VW−X) ⊆ C (B)⊥ and C (VM) ⊆ C (VB) . (33)

It is clear that the choice of B = M satisfies (33) and thereby also (32) holds for B = M. Postmultiplying
(32) by W+ in that situation gives (c) of Proposition 4.1.

Remark 3. Wang & Liski (1998) [43, p. 45] introduce an interesting matrix inequality by con-
sidering estimator Ay which is unbiased for BXβ under M = {y, Xβ, V}, i.e., AX = BX. Let
W = V + XUU′X′ ∈ W≥(M ). Then BPX;W+y = BLUE(BXβ) and for any A and B satisfying
AX = BX,

cov(BPX;W+y) ≤L cov(Ay) ,

i.e.,
B
[
X(X′W−X)−X′ − XUU′X′

]
B′ ≤L AVA′,

which is further equivalent to
B
[
X(X′W−X)−X′

]
B′ ≤L AWA′. (34)

Equality appears in (34) if and only if Ay is the BLUE(BXβ) which by Proposition 2.1 happens if and
only if C (VA′) ⊆ C (X).

Another interesting application of the W≥-matrix is given by [27] who considered the upper bound for

δ = trace[cov(µ̂ | M ) − cov(µ̃ | M )] = trace[HVM(MVM)−MVH] ,

where M = {y, Xβ, V}. Without going into more details we may only mention that they based their
proof by noting that

δ = trace[cov(µ̂ | MW) − cov(µ̃ | MW)] ,

where MW = {y, Xβ, W}, with W = V + α2XX′ ∈ W≥(M ) and could generalize the result of Rao
(1985) [39] given for a positive definite V.

5 Partitioned Linear Model
Consider then the estimation of µ1 = X1β1 under the partitioned model M12 = {y, X1β1 + X2β2, V}
assuming that µ1 is estimable which is well known to hold if and only if

C (X1) ∩ C (X2) = {0} , i.e., r(M2X1) = r(X1) .

Let us denote the small models as Mi = {y, Xiβi, V}, i = 1, 2. Corresponding to (19), Wi ∈ W≥(Mi)
if there exists a matrix Li such that

Wi = V + XiLiL′
iX′

i , C (Wi) = C (Xi : V) , i = 1, 2 . (35)

Premultiplying M12 by M2 = In − PX2 yields the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} ,
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which is a special case of the transformed model T = {Fy, FXβ, FVF′} , where F ∈ R
f×n. In view

of the Frisch–Waugh–Lovell theorem, see, e.g., [13, Sec. 6], the BLUEs of θ1 = M2X1β1 under M12
and M12·2 coincide. It is noteworthy that θ1 is estimable under M12 as well as under M12·2. An explicit
expression for the BLUE of θ1 under M12·2 can be obtained from

BLUE(θ1 | M12·2) = BLUE(θ1 | M12) = PM2X1;W−
rm

M2y,

where
PM2X1;W−

rm
= M2X1(X′

1M2W−
rmM2X1)−X′

1M2W−
rm ∈ {Pθ1|M12·2} ,

and Wrm is an arbitrary W-matrix in M12·2, i.e., Wrm ∈ W(M12·2). Notice that

PM2X1;W−
rm

M2 ∈ {Pθ1|M12} .

Clearly any matrix of the form M2(V + X1K1K′
1X′

1)M2 satisfying

C [M2(V : X1K1)] = C [M2(V : X1)] = C (M2W1) , (36)

is a W≥-matrix in M12·2. Putting K1 = L1 as in (35) we can choose

Wrm = M2W1M2 ∈ W≥(M12·2) .

Thus the BLUE of θ1 = M2X1β1 under M12·2 can be expressed as

BLUE(θ1 | M12·2) = M2X1(X′
1Ṁ2X1)−X′

1Ṁ2y, (37)

where
Ṁ2 = M2(M2W1M2)−M2 .

Notice that by Proposition 4.1 the matrix

PM2X1;W+
rm

= M2X1(X′
1M2W−

rmM2X1)−X′
1M2W+

rm

belonging to {Pθ1|M12·2} is unique with respect to the choice of generalized inverses indicated by “−” as well
as with the choice of Wrm ∈ W≥(M12·2). It is easy to confirm that C (X′

1M2) = C (X′
1Ṁ2X1) = C (X′

1)
where the last iquality holds if µ1 is estimable in M12.

It is clear that for estimable µ1 we have

BLUE(µ1 | M12·2) = BLUE(µ1 | M12) = X1(X′
1Ṁ2X1)−X′

1Ṁ2y. (38)

Notice that by (36) M2VM2 ∈ W≥(M12·2) if and only if C (M2X1) ⊆ C (M2V), i.e.,

C (X1) ⊆ C (X2 : V) .

Thus, for example for a positive definite V and full-rank X we have

β̃1(M12) = (X′
1Ṁ2V X1)−1X′

1Ṁ2V y, cov[β̃1(M12)] = (X′
1Ṁ2V X1)−1,

where
Ṁ2V = M2(M2VM2)−M2 = V−1 − V−1X2(X′

2V−1X2)−1X′
2V−1.

Consider now the following choice for Wℓ ∈ W≥(M12) (with obvious partitioning)

Wℓ = V + XUU′X′ = V + X
(

U1
U2

)
(U′

1 : U′
2)X′,
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where U = (U′
1 : U′

2)′ has the property

C (Wℓ) = C (V : X1U1 + X2U2) = C (V : X1 : X2) . (39)

Premultiplying (39) with M2 gives

C (M2Wℓ) = C [M2(V : X1U1)] = C (M2W1) .

The nonnegative definiteness of Wℓ means that C (M2Wℓ) = C (M2WℓM2) and so we have proved the
following:

W ∈ W≥(M12) =⇒ M2WM2 ∈ W≥(M12·2) . (40)
Thus the BLUE(θ1 | M12) has a representation PM2X1;W−

ℓ
M2y, where

PM2X1;W−
ℓ

= M2X1(X′
1M2W−

ℓ M2X1)−X′
1M2W−

ℓ ∈ {Pθ1|M12·2}

so that

BLUE(θ1 | M12) = M2X1(X′
1Ṁ2W X1)−X′

1Ṁ2W y,

BLUE(µ1 | M12) = X1(X′
1Ṁ2W X1)−X′

1Ṁ2W y,

where
Ṁ2W = M2(M2WℓM2)−M2 and Wℓ ∈ W≥(M12) .

Denoting
PM2X1;W+

ℓ
= M2X1(X′

1M2W−
ℓ M2X1)−X′

1M2W+
ℓ ∈ {Pθ1|M12·2} ,

we observe by Proposition 4.1 that

PM2X1;W+
ℓ

= PM2X1;W+
rm

,

BLUE(θ1 | M12) = PM2X1;W−
ℓ

M2y = PM2X1;W−
rm

M2y .

Now we can wonder whether (40) holds for any W ∈ W(M12) so that W is not necessarily symmetric
nor nonnegative definite. So, let Wt be of the form Wt = V + XTX′, where

C (Wt) = C (V + XTX′) = C (X : V) . (41)

To have (40) holding for any Wt ∈ W(M12) we should have

C (M2WtM2) = C [M2(X : V)] . (42)

By (41) we observe that

C (M2WtM2) ⊆ C (M2Wt) = C [M2(X : V)] , (43)

so that (42) holds if and only if
C (M2WtM2) = C (M2Wt) . (44)

In other words, the implication

W ∈ W(M12) =⇒ M2WM2 ∈ W(M12·2) (45)

holds if and only if (44) holds; this happens, e.g., if W is nonnegative definite.
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One alternative expression for the BLUE of µ1 can be obtained by premultiplying the fundamental
BLUE-equation

X(X′W−X)−X′W−(X1 : X2 : VM) = (X1 : X2 : 0) , where W ∈ W ,

by M2 yielding

(M2X1 : 0)(X′W−X)−X′W−(X1 : X2 : VM) = (M2X1 : 0 : 0) . (46)

Because r(M2X1) = r(X1), we can, by the rank cancellation rule of Marsaglia & Styan (1974) [31],
cancel M2 in (46) and thus an alternative expression for (38) is

µ̃1(M12) = (X1 : 0)(X′W−X)−X′W−y.

Let us figure out what is the covariance matrix of the BLUE of estimable µ1 = X1β1 under M12
when

µ̃1(M12) = X1(X′
1Ṁ2W X1)−X′

1Ṁ2W y =: Ay.

Notice that cov(µ̃1 | M12) is obviously unique and hence invariant for the choice of representation of
the BLUE of µ1. Choosing W = V + XUU′X′ ∈ W≥(M12), where U = (U′

1 : U′
2)′, we get (after

straightforward calculation)

cov(µ̃1 | M12) = AVA′ = A(W − XUU′X′)A′

= X1(X′
1Ṁ2W X1)−X′

1 − X1U1U′
1X′

1 ,

where, in light of part (e) of Proposition 6.1 in Section 6, X′
1Ṁ2W X1 can be written as

X′
1Ṁ2W X1 = X′

1

[
W+ − W+X2(X′

2W+X2)−X′
2W+

]
X1 .

Remark 4. We can generalise the considerations in (41)–(45) for the transformed model T =
{Fy, FXβ, FVF′}, where F ∈ Rf×n. Then the set of W-matrices is defined as

W(T ) =
{
W : W = F(V + XNX′)F′, C (W) = C [F(X : V)]

}
.

Choosing Wt = V + XTX′ ∈ W(M ) we have

C (FWtF′) ⊆ C (FWt) = C [F(X : V)] . (47)

If we want that FWtF′ ∈ W(T ), we need to have the equality in (47), which happens if and only if
r(FWtF′) = r(FWt). Thus one representation for the BLUE of FXβ under T is

FX[X′F′(FWtF′)−FX]−X′F′(FWtF′)−Fy ,

where Wt ∈ W(M ) and r(FWtF′) = r(FWt) as pointed out by [24, p. 287].
Remark 5. To simplify the considerations in the partitioned model M12 we could consider the subclass
W#(M12) of W≥(M12) defined so that W ∈ W#(M12) if Wi = V + XiLiL′

iX′
i , C (Wi) = C (Xi :

V) , i = 1, 2, and

W = V + X1L1L′
1X′

1 + X2L2L′
2X′

2 .
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The benefit in using W#(M12) instead of W≥(M12) is that some calculations become simpler. For
example, if W ∈ W#(M12), then

M2WM2 = M2W1M2 ∈ W(M12·2) ,

Ṁ2 = M2(M2W1M2).M2 = M2(M2WM2).M2 = Ṁ2W ,

while W ∈ W≥(M12) implies

M2WM2 ∈ W(M12·2) and M2W1M2 ∈ W(M12·2)

but the equality M2WM2 = M2W1M2 does not necessarily hold.

6 Some Properties of the ⊥
It is interesting to take a further look at the ⊥-operation and its usefulness in linear models. Let’s begin
by citing [35, Sec. 5.13].

Proposition 6.1. Consider the model M = {y, Xβ, V} and let W ∈ W(M ). Then

C (VX⊥) = C (W−X : In − W−W)⊥, (48)

where W− is an arbitrary (but fixed) generalized inverse of W. The column space C (VX⊥) can be
expressed also as

C (VX⊥) = C
[
(W−)′X : In − (W−)′W′

]⊥
.

Moreover, let V be possibly singular and assume that C (X) ⊆ C (V). Then

C (VX⊥) = C (V−X : In − V−V)⊥ ⊆ C (V−X)⊥,

where the inclusion becomes equality if and only if V is positive definite.

It is of particular interest to note that the perp symbol ⊥ falls down, so to say, very “nicely” when V
is positive definite:

C (VX⊥)⊥ = C (V−1X) ,

but when V is singular we have to use a much more complicated rule (48).
Markiewicz & Puntanen [29] reviewed various features of the perp-operation, and proved, e.g., the

following: If W ∈ W , then

C (VX⊥) = C (W−X)⊥ ⇐⇒ C (X : V) = R
n.

For the following Proposition 6.2, see [35, Sec. 5.13] and [30, Lemma 4]. In this lemma the notation
A1/2 stands for the nonnegative definite square root of a nonnegative definite matrix A. Similarly A+1/2

denotes the Moore–Penrose inverse of A1/2 so that PA = A1/2A+1/2 = A+1/2A1/2.

Proposition 6.2. Let W ∈ W≥(M12) and Ṁ2W = M2(M2WM2)−M2. Then:

(a) C (VM)⊥ = C (WM)⊥ = C (W+X : QW), where QW = In − PW,

(b) C (W1/2M2)⊥ = C (W+1/2X2 : QW) ,

(c) C (W1/2M2) = C (W+1/2X2 : QW)⊥ = C (W+1/2X2)⊥ ∩ C (W) ,
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(d) PW1/2M2 = PW − PW+1/2X2 = PC (W+1/2X2)⊥∩C (W) ,

(e) PWṀ2W PW = W+ − W+X2(X′
2W+X2)−X′

2W+,

(f) WṀ2W X1 = [In − X2(X′
2W+X2)−X′

2W+]X1 .

Proof. Claim (a) follows from Proposition 6.1. Let us take a look, in more details as [30, Sec. 2], at the
other statements of Proposition 6.2. We observe that (W1/2M2)′(W+1/2X2 : QW) = 0 so that

C (W+1/2X2 : QW) ⊆ C (W1/2M2)⊥. (49)
We further have

r(W+1/2X2 : QW) = r(W+1/2X2) + r(QW)
= r(X2) + n − r(W) ,

r(W1/2M2)⊥ = n − r(W1/2M2)
= n − [r(W1/2) − dim C (W1/2) ∩ C (X2)]
= n − r(W) + r(X2) ,

which confirms the equality in (49), i.e., claim (b) which is obviously equivalent to (c). Part (d) follows
from (c):

PW1/2M2 = In − P(W+1/2X2:QW) = In − (QW + PW+1/2X2)
= PW − PW+1/2X2 = PC (W+1/2X2)⊥∩C (W) .

In view of (d) we have
PWṀ2W PW = PWM2(M2WM2)−M2PW

= W+1/2PW1/2M2W+1/2

= W+1/2(PW − PW+1/2X2)W+1/2

= W+ − W+X2(X′
2W+X2)−X′

2W+,

and hence
WṀ2W X1 = W[W+ − W+X2(X′

2W+X2)−X′
2W+]X1

= [In − X2(X′
2W+X2)−X′

2W+]X1 .

which completes the proof.

Remark 6. Markiewicz & Puntanen [30, p. 11] mention that in claim (f) of Proposition 6.2 the matrix
W can be replaced with W1 to obtain

W1Ṁ2X1 = [In − X2(X′
2W+

1 X2)−X′
2W+

1 ]X1 , (51)
where Ṁ2 = M2(M2W1M2)−M2. However, (51) does not hold in general; it holds, for example, if
C (X2) ⊆ C (W1).

For completeness we state the following related result, due to [41, p. 140].
Proposition 6.3. Consider the linear model M = {y, Xβ, V} and denote W = V + XTX′, where
C (W) = C (X : V), and let W− be an arbitrary generalized inverse of W. Then

C (W−X) ⊕ C (X)⊥ = R
n, C (W−X)⊥ ⊕ C (X) = R

n,

C [(W−)′X] ⊕ C (X)⊥ = R
n, C [(W−)′X]⊥ ⊕ C (X) = R

n.
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7 Linear Sufficiency
A linear statistic Fy, where F ∈ R

f×n, is called linearly sufficient for Xβ under the model M =
{y, Xβ, V}, if there exists a matrix A ∈ R

n×f such that AFy is the BLUE for Xβ. Correspondingly,
Fy is linearly sufficient for estimable Kβ, where K ∈ Rk×p, if there exists a matrix A ∈ Rk×f such that
AFy is the BLUE for Kβ.

The concept of linear sufficiency was essentially introduced in early 1980s by Baksalary & Kala [4, 3]
and by Drygas [10]. [4] talked about “linear transformations preserving best linear unbiased estimators”
and Drygas [10] introduced the term “linear sufficiency”.

By definition, Fy is linearly sufficient for estimable Kβ if and only if the equation

AF(X : VM) = (K : 0)

has a solution for A, which happens if and only if

C

(
K′

0

)
⊆ C

(
X′F′

MVF′

)
.

Sometimes we may use the notation Fy ∈ S(Kβ) to indicate that Fy is linearly sufficient for Kβ.
Moreover, we can denote, symbolically,

S(Kβ) = {Fy : AF(X : VM) = (K : 0) for some A ∈ Rk×f} .

For the proofs of parts (a) and (b) of Proposition 7.1, see [4], and for (c), [3].

Proposition 7.1. The statistic Fy is linearly sufficient for Xβ under the linear model M = {y, Xβ, V}
if and only if any of the following equivalent statements holds:

(a) C (X) ⊆ C (WF′), where W ∈ W≥ ,

(b) r(X : VF′) = r(WF′), where W ∈ W≥ .

Moreover, Fy is linearly sufficient for estimable Kβ under M if and only if

(c) C [X(X′W−X)−K′] ⊆ C (WF′), where W ∈ W≥ .

The crucial connection between the concept of linear sufficiency and the transformed model T =
{Fy, FXβ, FVF′} was was proved by Baksalary & Kala [4, 3]: if Kβ is estimable under M and T ,
then

Fy ∈ S(Kβ) ⇐⇒ BLUE(Kβ | M ) = BLUE(Kβ | T ) w.p. 1.

Thus we do not lose anything essential if we estimate Kβ under the transformed model T instead of M .
The next proposition characterizes when Fy is linearly sufficient for µ1.

Proposition 7.2. Let µ1 = X1β1 be estimable under M12 and let W ∈ W≥. Then Fy is linearly
sufficient for µ1 under M12 if and only if any of the following equivalent conditions holds:

(a) C (WṀ2W X1) ⊆ C (WF′) , where Ṁ2W = M2(M2WM2)−M2 .

(b) C
{
[In − X2(X′

2W+X2)−X′
2W+]X1

}
⊆ C (WF′) .
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Let us prove Proposition 7.2 along the lines of [24, Sec. 3]. For a different proof, see [21, Th. 2].
One expression for the BLUE of µ1 = X1β1, obtainable from M12·2, is

Ay := X1(X′
1Ṁ2W X1)−X′

1Ṁ2W y,

where Ṁ2W = M2(M2WM2)−M2 and W ∈ W≥(M12). On the other hand, the BLUE of µ1 can be
written also as

By := (X1 : 0)(X′W−X)−X′W−y = K(X′W−X)−X′W−y,

where K = (X1 : 0) ∈ R
n×p and W ∈ W≥(M12). By the consistency of the model M12 we have

Ay = By with probability 1, i.e., AW = BW, which can be transposed to give

WṀ2W X1(X′
1Ṁ2W X1)−X′

1 = X(X′W−X)−K′.

In light of part (c) of Proposition 7.1, the claim (a) is confirmed by showing that

C [WṀ2X1(X′
1Ṁ2W X1)−X′

1] = C (WṀ2W X1) ,

i.e., r
[
WṀ2W X1(X′

1Ṁ2W X1)−X′
1

]
= r(WṀ2W X1), which follows from

r(WṀ2W X1) ≥ r
[
WṀ2W X1(X′

1Ṁ2W X1)−X′
1

]

≥ r
[
WṀ2W X1(X′

1Ṁ2X1)−X′
1Ṁ2W X1

]

= r(WṀ2W X1) .

The claim (b) follows from part (f) of Proposition 6.2.
Remark 7. It is of interest to consider some particular properties related to the linear sufficiency condition
(c) of Proposition 7.1:

Fy ∈ S(Xβ) ⇐⇒ C (X) ⊆ C (WF′) , where W ∈ W≥(M ). (52)

The matrix W in (52) belongs to the set W of (symmetric) nonnegative definite matrices. One could
wonder whether the column space C (WF′) is unique once F is given, i.e., does it remain invariant for
any choice of W ∈ W≥? Kala et al. [24, Ex. 1] provide a counterexample showing that this is not the
case. Kala et al. [24, Sec. 4] also studied whether the column space C (WF′) is invariant for any choice
of W ∈ W(M ) if Fy ∈ S(Xβ). The answer is positive, and moreover,

C (WF′) = C (X) ⊕ C (MVF′) = C (W′F′) .

Kala et al. [24, Th. 4] were also wondering whether in (52) the set W≥ can be replaced with the
more general set W . Interestingly, the answer is positive. As far as we know, in all linear sufficiency
considerations appearing in literature, it is assumed that W is nonnegative definite. However, this is not
necessary, and W can also be nonsymmetric. It may be mentioned, in passing, that the proof is parallel
to that of [4, p. 914] who utilize the fact that By is a BLUE of Xβ if and only if

BW = X(X′W−X)−X′, where W ∈ W≥ . (53)

It is easy to confirm that in (53) the set W≥ can be replaced with W . Namely we know that B ∈ {Pµ|M }
if and only if

B = X(X′W−X)−X′W− + EQW (54)
for some E ∈ R

n×n. Postmultiplying (54) by W and using X′W−W = X′ gives (53). On the other
hand, if B satisfies (53) then B is necessarily of the form (54) for some E and thereby B ∈ {Pµ|M }.
Remark 8. Baksalary & Kala (1981) [4, p. 914] write the following (in our notation):
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(a) “If the condition C (X) ⊆ C (WF′), where W ∈ W≥(M ), is satisfied, then each BLUE of Xβ in
the transformed model T is also a BLUE of Xβ in the original model M , and vice versa.”

It is the phrase vice versa that may cause some confusion as stated by [25, Sec. 4]. Let us discuss the
meaning of the vice versa part along the lines of [16, Sec. 11.6].

Suppose that η = Kβ is estimable under the transformed model T (and thereby also under M ).
Then CFy is the BLUE for Kβ under T if and only if C belongs to the set {Pη|T } which is defined as

C ∈ {Pη|T } ⇐⇒ C(FX : FVF′QFX) = (K : 0) .

where QFX = If − PFX. The set of products CF, where C ∈ {Pη|T }, will be denoted as {Pη|T F}. It
means that each matrix D ∈ {Pη|T F} applied to y provides the BLUE for Kβ under the transformed
model T , i.e.,

D ∈ {Pη|T F} ⇐⇒ D = CF, where C ∈ {Pη|T }.

Consider the multipliers of the response vector y when playing with the BLUEs under M and under
T ; these sets are {Pη|M } and {Pη|T F}, respectively. Assume further that Fy is linearly sufficient for η.
Then the inclusion {Pη|T F} ⊆ {Pη|M } is straightforward but corresponding equality is more problematic.
The following solution was given by [16, Prop. 11.17].

Proposition 7.3. Let η = Kβ be estimable under T , W ∈ W≥(M ) and assume that Fy ∈ S(η).
Then {Pη|M } = {Pη|T F} holds if and only if

QW = QWPF′ , i.e., C (W)⊥ ⊆ C (F′) . (55)

In other words, under the linear sufficiency and condition (55), each representation of the BLUE of Kβ

under M is a representation of the BLUE under T and vice versa.

8 Equality of the BLUEs Under Two Models
Let us consider two linear models, A = {y, Xβ, Va} and B = {y, Xβ, Vb}, having different covariance
matrices. Let Wa ∈ W≥(A ) so that for some U

Wa = Va + XUU′X′, where C (Wa) = C (X : Va) .

Then one representation for the BLUE of Xβ under A is

PX;W+
a
y = X(X′W+

a X)−X′W+
a y.

We can now ask whether PX;W+
a
y continues to be BLUE under B. This happens if and only if

X(X′W+
a X)−X′W+

a (X : VbM) = (X : 0) ,

which is obviously equivalent to X′W+
a VbM = 0 . Further equivalent conditions are given in Proposition

8.1 below which appears in Mitra & Moore (1973) [33, Th. 2.1, Th. 2.2, Note 1]. Some parts they did
not prove in details, giving only hints. For a complete proof, see [18, Th. 1].

Proposition 8.1. Using the earlier notation, PX;W+
a
y is the BLUE for Xβ also under B if and only if

any of the following equivalent conditions holds:

(a) X′W+
a VbM = 0 , (b) C (VbM) ⊆ C (W+

a X)⊥ =: C (Z),
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(c) Vb = XRX′ + ZSZ′ for some R and S, and Z ∈ {(W+
a X)⊥},

(d) PX;W+
a
Vb is symmetric,

(e) C (W+
a X) is spanned by a set of r proper eigenvectors of Vb with respect to Wa; r = r(X) ,

(f) C (X) is spanned by a set of r eigenvectors of VbW+
a .

In Proposition 8.1 we utilize the concept of proper eigenvectors following Rao & Mitra (1971) [41,
Sec. 6.3]; see also [34], and [42]. To have a brief look at these concepts, let A and B be two symmetric
n × n matrices of which B is nonnegative definite. Let λ ∈ R be a scalar and u a vector such that

Au = λBu, Bu ̸= 0 .

Rao & Mitra [41, Sec. 6.3] call λ a proper eigenvalue and u a proper eigenvector of A with respect to B,
or shortly, (λ, u) is a proper eigenpair for (A, B). If B is singular, there may exist a vector u ̸= 0 such
that Au = Bu = 0, in which case

(A − λB)u = 0

is satisfied with arbitrary λ. Such a vector u ∈ Rn is called an improper eigenvector of A with respect to
B. The space of improper eigenvectors is precisely N (A) ∩ N (B) = C (A : B)⊥.

What about if we request that every representation of BLUE of µ = Xβ under A continues to be
BLUE under B, or shortly

{BLUE(µ | A )} ⊆ {BLUE(µ | B)} , i.e., {Pµ|A } ⊆ {Pµ|B} . (56)

As an arbitrary member of {Pµ|A } can be expressed as

X(X′W+
a X)−X′W+

a + EQWa , where E ∈ Rn×n is free to vary,

we conclude that (56) holds if and only if

[X(X′W+
a X)−X′W+

a + EQWa ](X : VbM) = (X : 0) . (57)

It is straightforward to conclude that (57) holds for any E if and only if

C (VbM) ⊆ C (VaM) .

For the conditions like (56) see, e.g., [33] and [15].

9 Further Remarks
In this paper we have reviewed the properties of matrix W belonging to the class

W(M ) =
{
W ∈ Rn×n : W = V + XTX′, C (W) = C (X : V)

}
,

where T can be any p × p matrix as long as C (W) = C (X : V) is satisfied and M = {y, Xβ, V}.
Corresponding considerations can be done in other models, like linear model with new observations, which
we will denote as M∗. The mixed linear model is a special case of of the model with new observations.
In this article we skip the mixed model but will briefly go through the linear model with new observations.
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We can extend the model M = {y, Xβ, V} by considering a q × 1 random vector y∗, which is an
unobservable random vector containing new future observations. These new observations are assumed to
be generated from

y∗ = X∗β + ε∗ = µ∗ + ε∗ ,

where X∗ is a known q × p matrix, β ∈ R
p is the same vector of fixed but unknown parameters as in

M , and ε∗ is a q-dimensional random error vector with E(ε∗) = 0. The covariance matrix of y∗ and the
cross-covariance matrix between y and y∗ are assumed to be known and thus we have

E
(

y
y∗

)
=
(

µ

µ∗

)
=
(

X
X∗

)
β , cov

(
y
y∗

)
=
(

V V12
V21 V22

)
.

This setup can be denoted shortly as

M∗ =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
.

Our aim is to predict the unobservable y∗ on the basis of the observable y.
The random vector Ay is a linear unbiased predictor (LUP) of y∗ if E(y∗ − Ay) = 0 for all β ∈ Rp.

Such a matrix A ∈ Rq×n exists if and only if C (X′
∗) ⊆ C (X′), i.e., X∗β is estimable under M and then

we say that y∗ is predictable under M∗. Now a LUP Ay is the best linear unbiased predictor, BLUP,
for y∗, if the covariance matrix of the prediction error, subject to the unbiasedness of the prediction, is
minimized:

cov(y∗ − Ay) ≤L cov(y∗ − A#y) for all A# : A#X = X∗ .

It appears that the linear predictor Ay is the BLUP for y∗ if and only if A ∈ R
q×n satisfies the the

so-called fundamental BLUP equation

A(X : VX⊥) = (X∗ : V21X⊥) . (58)

For (58), see, e.g., [9, p. 294], and [20, p. 1015]. Corresponding to (58), By is the BLUP(ε∗) whenever

B(X : VX⊥) = (0 : V21X⊥) .

Now the BLUP(y∗) under M∗, see, e.g., [17, Sec. 2] and [19, Sec. 4], can be written for example as

BLUP(y∗) = BLUE(µ∗) + BLUP(ε∗)
= X∗By + V21V−(In − G)y
= X∗By + V21W−(In − G)y
= X∗By + V21M(MVM)−My,

where B = (X′W−X)−X′W− and G = XB = PX;W− and W ∈ W(M ). In particular, if V is positive
definite and r(X) = p, we obtain

BLUP(y∗) = X∗β̃ + V21V−1(y − Xβ̃)
= X∗β̃ + V21M(MVM)−My,

where β̃ = (X′V−1X)−1X′V−1y.
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Abstract

Recent research towards measuring agreement among di�erent methods or raters has received wide attention.

The concordance correlation coe�cient (CCC) has been used to assess agreement between raters or methods

of measurements on continuous scales. However, CCC does not consider repeated measurement structures for

multiple raters which may arise, e.g. longitudinal studies in clinical trials or bioassay data with sub-samples. For

those designs, random variables underlying the measurements are not independent nor identically distributed.

In this article we generalize the concept of CCC for repeated correlated measurements for multiple raters. For

comparing agreement between raters, we have performed analyses based on two-level and three-level models

and found that a three-level model �ts better for data we collected in the Glucosamine/Chondroitin Arthritis

Intervention Trial. We introduce the concept of intra-rater agreement in the context of CCC when raters are

asked to rate each subject multiple times. Our approach represents an attempt in evaluating the CCC for

complex data structures involving multiple levels.

Keywords: Concordance Correlation Coe�cient (CCC), Three-level Longitudinal Linear Mixed-e�ect Model,

Agreement

1 Introduction

Medical research involving taking measurements from images requires precision and the ability to

replicate those measurements. Inter- and intra-observer variability are common and can introduce

both measurement error and bias. Thus, a common quality control measure is necessary when

multiple raters take measurements independently. In addition, measurements which historically were

taken by humans now can often be obtained using computer programs and in many instances computer

measurements have replaced corresponding human measurements. Statistical methods to measure

an agreement among multiple raters have been in common use for decades. Thus, it is possible

to assess both inter and intra-rater reliability, or agreement, for measurements taken from a set of

independent measurements, such as radiographs of knee joints in individuals participating in a clinical

trial. Thus, an agreement statistic for multiple raters, (e.g. human and computer algorithms) is

needed to compare their performances.

Cohen's Kappa statistic [22] and weighted Kappa statistic[23] are the most popular indices for

measuring agreement when responses are nominal. The weighted Kappa statistic has been proposed

by Landis and Koch[37] and it is appropriate for assessing agreement when the categories of response

© 2022 Author(s). (https://www.thegsa.in/).
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are ordinal. Several authors have provided guidelines for the interpretation of the Kappa statistic, vide,

for example, Landis and Koch (1977), Bland and Altman (1986)[11] and Kraemer et al. (2002)[18].

A comprehensive review paper is also worth reporting here (Banerjee et al. (1999)[2]). Recently,

some studies have been undertaken to critically examine certain aspects of Cohen's Kappa. These

relate to its attaining the negatively extreme value and its standardization [Sinha et al (2006)[65]].

Extensions have also been made to allow for more than two raters, more than two possible ratings,

ordinal data and continuous data. In addition, many other applications of the Kappa statistic in

a variety of di�erent contexts can be found in the literature and also in a book by Eye and Mun

(2010)[69]. Another book dealing with both categorical and continuous measurements for multiple

raters and multiple ratings is by Shoukri (2004)[64].

Despite its wide use in psychological, behavioral and social science studies, Cohen's Kappa has severe

draw backs and limitations. It works perfectly well when all subjects are rated by two raters with

100 percent `matching' between two categories. However, it performs poorly in inter-rater agreement

at the presence of marginal heterogeneity. On the other hand, for 100% `dismatching' i.e., 100%

matching along the `o�-diagonals' Kappa does not always give the value -1, even though it should.

Sinha et. al. (2006)[65] �xed the formula of Kappa in this scenario. Another limitation of using

Cohen's Kappa is that it cannot be generalized for multilevel hierarchical designs with continuous

outcomes.

Lin (1989)[38] introduced CCC for measuring agreement when outcome measures are continuous. A

weighted CCC was proposed by Chinchilli et al.(1996)[17] for repeated measurement designs and a

generalized CCC for continuous and categorical data was introduced by King and Chinchilli (2001)[32].

Lin (2000)[47] also introduced the concept of total deviation index (TDI) for measuring individual

agreement with applications in laboratory performance and bio-equivalence. Furthermore, Lin et. al.

(2002)[45] proposed methods for checking the agreement in terms of coverage probability (CP) when

the two measurements are quantitative in nature. The approach proposed and studied in Lin et. al.

(2002) has been extended by Hedayat et. al. (2009)[27] for the case of multiple raters.

However, these methods are generally applied to low dimensional data structures. In clinical trials,

repeated measurements are taken on individuals over time. It is possible to measure agreement

at a single time point, but there is a lack of statistical methods that can take advantage of the

longitudinal structure of clinical trials. Measurements following complex data structures typically

su�er from measurement error providing reduced statistical power. A method that considers the

longitudinal nature of a clinical trial has the potential to provide additional insights into the data

structure and answers to questions such as: (i) does inter-rater reliability change over time? (ii) is

there an evidence for biased measurements for one rater compared with other raters? (iii) is the bias

or reliability in�uenced by the magnitude of the measurements or characteristics of the individual from

whom the measurements are obtained.

In this paper, our goal is to generalize the CCC measure between two raters proposed by Lin (1989)

for repeated measurements over time. In doing so, we would like to maintain the de�nition proposed

by Lin (1989). We propose a linear mixed-e�ect model to address the correlation due to repeated

measurements over time which is just an extension of the bivariate normal set up used in Lin (1989).

While comparing the CCC measure of our model with the existing works on generalized CCC, we

found that the one proposed by Carrasco et al. (2009)[14] lacks the `mean di�erence' term in the

denominator, thus, it is di�erent from Lin's (1989)[38] CCC. Apart from that, we also noticed that

Tsai and Lin (2018)[68] have proposed a CCC measure which is an extension of the CCC measure

introduced by King et al. (2007)[33], conceptually di�erent from Lin's CCC (1989)[38]. In that way,

we can claim the novelty of our approach, neither Carrasco et al. (2009)[14] nor King et al.(2007)[33]
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can be considered as a generalization of Lin's (1989)[38] work.

The fundamental contribution of this article is in generalizing the concept of CCC for multilevel

hierarchical designs when subjects are rated repeatedly over time, and the same rater is asked to

rate subjects at multiple times at each measuring time point. We address the complexity of intra-

and inter-rater agreement for correlated continuous outcomes when multiple raters are involved. Our

purpose in this research study is to propose an `agreement index' in situations dealing with multiple

raters and multiple measurements obtained from longitudinal data. In Section 2, we provide our

motivational example and describe the complexity of the underlying trial design involving multiple

raters in a longitudinal design where repeated measurements are obtained at every measuring time

point. In Section 3, we develop the mathematical foundation for computing agreement between

raters for a hierarchical design with repeated measures, and discuss estimation of the underlying

model parameters by several methods. In Section 4, we provide a limited simulation study to evaluate

the performance of our proposed methodology. In Section 5, we analyze the data of the motivational

example and provide relevant interesting results. Finally, in Section 5 we discuss �exibility and some

limitations of our model, and brie�y say how the inferential issues of our study will be addressed in

future.

2 Motivational Example

Osteoarthritis (OA) is the most common form of all arthritides, a�icting approximately 27 million

persons in the United States. Based on 2010-2012 data from the National Health Interview Survey

(NHIS), an estimated 52.5 million adults (22:7%) have self-reported doctor-diagnosed arthritis.

Weight bearing large joints, especially the knees, are often involved in OA. People with osteoarthritis

often report pain limiting daily activites. In addition, radiographs of the joints generally show changes

in the joint such as loss of cartilage, which can be observed as a narrowing of the joint space which

increases over time.

The Glucosamine/Chondroitin Arthritis Intervention Trial, (GAIT) N01-AR-9-2236, is an NIH funded,

double-blind, �ve-arm randomized clinical trial, which was designed to determine whether glucosamine,

chondroitin sulfate and/or the combination of glucosamine and chondroitin sulfate are more e�ective

than placebo and whether the combination is more e�ective than glucosamine or chondroitin sulfate

alone in the treatment of knee pain associated with osteoarthritis (OA) of the knee[21, 57].

A substudy was also conducted to further examine the e�ects of these treatments on changes in

joint space width over time. Measurements from each radiograph were obtained by two trained

manual readers and a computer measurement system. Each radiograph of Joint Space Width (JSW)

measurements was evaluated for meeting image quality inclusion criteria for the structural study. The

images were blinded and coded at the Hines Cooperative Studies Program (CSP) Coordinating Center

as to patient name, participating clinic, treatment group and date the X-ray was taken. The X-rays

were read by physician investigators without knowledge of the patient name, participating clinic,

treatment, and date of X-ray. These blinded images were read by physician investigators in matched

pre-post pairs, but read in a randomly assigned order. Each X-ray was interpreted independently by

two investigators: a rheumatologist with extensive experience in clinical investigation and previous

experience in radiographic interpretation of clinical trials, and a musculoskeletal radiologist. Each

reader reviewed plain hard copy radiographs and measured the JSW with calipers. An additional non-

technical rater used the computer program Mdisplay by Buckland-Wright (1994)[12, 40, 54, 24] to

measure JSW on digitized images of each �lm. Mdisplay is a semi-automated program requiring a user

to mark the endpoints of the medial tibial and femoralcondyles and then an edge-�nding algorithm

determines the joint space borders. To determine whether manual measurement of JSW on plain
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radiographs is equally as reproducible as computer generated measurements of digitalized radiographs,

it is necessary to perform statistical evaluation of the agreement. Ideally, new measurements would

be compared with the true value, known as the gold standard; however, in the case of measuring JSW

- as is often the case - the gold standard is unknown.

3 Hierarchical Mixed-E�ects Model and Estimation of Concor-

dance Correlation Coe�cient

Statistical measures for an agreement remain inadequate when hierarchical designs are used to eval-

uate subjects by multiple raters. To lay down the foundation, consider a study, where multiple raters

are rating ( e.g. reading x-ray plates) every subject over time. After a time gap, raters are asked

again to rate the same x-ray plate that he/she rated before. Thus each rater is rating every subject

multiple times at each measuring time point. The idea of this design is displayed in Figure 1, where

replicates (level 1) are nested within x-ray plates (level 2), and plates are nested within subjects (level

3).

Figure 1: This �gure displays a three level hierarchical design with multiple readings at each time for a subject by

a rater

A design of this type provides us an opportunity to measure both within and between raters agreement.

Denote two raters by X and W . The kth measure (or replicate) obtained from rater X for subject

i , at j th time point is denoted by xi jk , a similar measure from rater W is denoted by wi jk , where

i = 1; 2; � � � ; N, i.e. there are N study participants, j(i) = 1; 2; � � � ; Ti , means that the i th subject is

measured in a total of Ti time points, and ki j = 1; 2; � � � ; Ki j means that the i th subject at the j th

time point is measured ki j times. For this study, we propose the following three level mixed-e�ects

models for X and W respectively [30].

Xi jk = PX1i�X + PX2iVXij + PX3iUXi + EXi jk
; (1)

Wi jk = PW1i�W + PW2iVWij + PW3iUWi + EWi jk
: (2)

Here, P:1i is the design matrix for �xed e�ects of dimension ni � p, p is the number of �xed covarites

(e.g. age, sex) in the model, P:2i and P:3i are design matrices for level-2, level-1 e�ects respectively.

� is an (p � 1) vector of �xed regression coe�cients, and E:i jk ; V:i j ; U:i ; denote respectively level-

1, level-2, and level-3 random e�ects. U:i is used for random subject e�ects, and it explains the

between-subject variability. V:i j addresses the within-subject variability. Our assumptions on within

and between subject variabilities are V:i j � N(0; Q);U:i � N(0; G), and on errors Ei jk � N(0;�). We

further assume that UXi , VXij and EXi are independent, and also UWi , VWij and EWi are independent

i 6= i 0. UXi and UXi 0 are independent, and also, UWi and UWi 0 are independent, i 6= i 0. VXij and VXi 0j

are independent, i 6= i 0, similarly VWij and VWi 0j are independent, i 6= i 0. Cov(VXij ; VXij 0) 6= 0, j 6= j 0,
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and Cov(VWij ; VWij 0) 6= 0, j 6= j 0. Cov(UXi ; UWi) 6= 0, for two raters evaluating the same subject, and

Cov(VXij ; VWij) 6= 0, for two raters evaluating the same subject at the same time point. We further

assume that all components in EXi jk
, and also those in EWi jk

are independent. Vectors EXi jk
and EWi jk

are independent.

Note that in the absence of multiple ratings at each time point (i.e. without replications of ratings),

our model reduces to the models discussed by Chinchilli et. al. (1996[17]; 2001[32]; 2007[33, 34]),

Choudhary, et. al. (2005)[20, 19], Barnhart, et. al. (2005 [5]).

Let Yi jk = (X 0

i jk ;W
0

i jk)
0

, Ui = (U0

Xi;U
0

Wi)
0

, Vij = (V0

Xij;VWij
0))

0

.

P1i =

(
PX1i 0

0 PW1i

)
;P2i =

(
PX2i 0

0 PW2i

)
;P3i =

(
PX3i 0

0 PW3i

)
:

The mixed-e�ects model for the aforementioned design is:

Yi jk = P1i� + P3iUi + P2iVij + Eijk: (3)

In the above model, the trend at the population level is measured by the �xed parameter vector �.

Random vectors are used to measure deviations of that trend at di�erent levels. For example, if a

subject is being rated by two raters longitudinally at four di�erent time points, and each rater repeats

it four times at every measuring time point, then Ti = 4, k = 4. Figure 2 shows the raw data

plotting of a subject for two raters. For each rater, the bold line represents the average trend of the

subject, whereas each line represents the trend of ratings over time for each replicate. Thus, for four

replicates, we have four lines plus the average trend line for each rater.

Figure 2: This �gure displays trend lines of raw data of two subjects with multiple readings by a rater

Concordance Correlation Coe�cient (CCC) for two raters

In the spirit of the general structure described in Model 3, we write a speci�c model for the i th

subject, where xi jk denotes the kth measurement at time j rated by the rater X.

xi jk = �0 + �1j + �0i + �1i j + �0i j + �i jk ; (4)
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where �0 is the baseline average of xi jk , �1 is the slope of xi jk across time, �0i and �1i are random

intercept and random slope respectively for subject i , �0i j is random intercept at time j of the i th

subject. �0i j and �0i j 0 are assumed to be uncorrelated. �i jks are random errors and assumed to be

autocorrelated. Similarly, the model for the W rater is:

wi jk = �00 + �01t + �00i + �01it + � 00i j + �0i jk ; (5)

with all variables similarly de�ned as in xi jk .

De�ne yi jkl =
(
xi jk j(l = 1) wi jk j(l = 2)

)0

. Combining these two models together, the augmented

model for two raters is:

yi jkl = �0�(l=1) + �1�(l=1)t + �0i�(l=1) + �1it�(l=1) + �0i j�(l=1)

+ �00�(l=2) + �01�(l=2)t + �00i�(l=2) + �01it�(l=2) + � 00i j�(l=2) + �i jkl :
(6)

Following Model (6), under the distributional assumptions of random e�ects stated above, the variance

covariance matrix of K replicates at time point t by rater X, is denoted by �xtt , where

�xtt = (�2
�0
+ �2

�1
t2)JK�K + �2

�0
JK�K + �2

e IK�K: (7)

Covariance matrix between two di�erent time points (t and t 0) of the same subject is :

�x
tt

0
= Cov(x1t ; x1t 0) = (�2

�0
+ �2

�1
tt 0)JK�K + �2

�0
IK�K + �2

e

tt 0

K�K; (8)

Covariance structure for Xi :

�Xi
=



�x11 �x12 : : : �xTT

...
...

...
...

�xT1
�xT2

: : : �xTT




KT�KT

;

where 
TK�TK de�nes an auto-correlated variance covariance structure, and the tt 0 th element of it

is denoted by 
tt 0

K�K . The covariance structure for Wi is similar to Xi , and the covariance structure

for Xi and Wi 0 is 0, where i 6= i 0. Let �2
xw = Cov(�0i j); �

0

0i j) + Cov(�0i ; �
0

0i), for which between-raters

variability is zero for two di�erent subjects. Under these assumptions, the covariance matrix of all T

measures of a subject, and that of all subjects rated by raters X and W are respectively

Cov(Xi ;Wi) = IT 
 (�2
xwJK�K);

�XW = Cov(X;W ) = IN 
 [IT 
 (�2
xwJK�K)];

�XX = IN 
�Xi
;

�WW = IN 
�Wi
;

(9)

Using these notations we de�ne the concordance correlation coe�cient [38, 41, 13, 45, 9, 51, 43,

19] between raters X and W and denote it by CCCXW , where

CCCXW =
tr(�X+W ��XX ��WW )

tr(�XX) + tr(�WW ) + (�x � �W )0(�X � �W )
: (10)

CCCXW =
tr(�XX +�WW ��X�W )

tr(�XX) + tr(�WW ) + (�x � �W )0(�X � �W )
(11)

Note that

(i) if �X = �W and tr(�XW ) = 0, then CCCXW = 0;
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(ii) if �X = �W and tr(�XW ) = tr(�XX) = tr(�WW ), then CCCXW = 1;

(iii) if �X = �W and tr(��XW ) = tr(�XX) = tr(�WW ), then CCCXW = �1.

In general, whatever be the parameters �X; �Y ;�XX;�WW and �XW and whatever be their

interrelations, it follows that (i) (�x � �W )0(�X � �W ) � 0; (ii) 2jtr(�XW )j � tr(�XX) + tr(�WW ).

Consequently, �1 � CCCXW � 1:

An extension of Concordance Correlation Coe�cient (CCC) for multiple raters

For the scenario of two raters, we have used two models for raters X and W ((4) & (5)) respectively,

and those models are connected by a bivariate covariance structure of the random e�ects. The idea

can be generalized by using a multivariate covariance structure. The combined model (6) can be

extended for L raters as follows:

yi jkl = �0l + �1l j + �0i l + �1i l j + �0i j l + �i jkl ; (12)

where, yi jkl denotes kth measurement at time j of ith subject rated by rater l . This model uses the

same notations used in (6) except the fact that an extra subscript l has been used in place of the

indicators to denote rater speci�c �xed and random e�ects.

We assume an unstructured covariance matrix for each of
(
�0i1 : : : �0iL

)0

,
(
�1i1 : : : �1iL

)0

,(
�0i j1 : : : �0i jL

)0

. These random e�ects are independent and identically distributed for time-

points j = 1; 2; :::; T nested in each subject i = 1; 2; :::; N. Let, var(�0i l) = �2
�0l
, var(�1i l) = �2

�1l
,

var(�0i j l) = �2
�0l

for l = 1; 2; :::; L:

Let l and l
0

be notations for two raters. We denote the vector of all measurements by rater l for ith

subject at time point t by lit =
(
yit1l : : : yitKl

)0

and accordingly li =
(
l

0

i1 : : : l
0

iT

)0

. For rater

l , (7) and (8) can be rewritten as,

�ltt = (�2
�0l

+ �2
�1l
t2)JK�K + �2

�0l
JK�K + �2

e IK�K: (13)

�l
tt

0
= Cov(l1t ; l1t 0) = (�2

�0l
+ �2

�1l
tt 0)JK�K + �2

�0l
IK�K + �2

e

tt 0

K�K; (14)

The covariance structure for li is �li =



�l11 �l12 : : : �lTT

...
...

...
...

�lT1
�lT2

: : : �lTT




KT�KT

.

Let, �2
l l

0 = Cov(yi jkl ; yi jkl 0 ) = Cov(�0i j l); �0i j l 0 ) + Cov(�0i l ; �0i l 0 ). So, the covariance structure between

two raters, l and l
0

for subject i can be written as Cov(li ; l
0

i ) = IT 
 (�2
l l

0JK�K). Using the above

notations, (9) can be rewritten as,

�l l
0 = IN 
 [IT 
 (�2

xwJK�K)];

�l l = IN 
�li ;
(15)

We de�ne, �li = E(li) = �0l1KT�KT +
(
1 2 : : : T

)0


 [�1l1K�K], for i = 1; :::; N , accordingly,

�l = 1N�N 
 �l1:
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Generalized CCC for L raters is de�ned as,

CCC =

2
∑
l<l

0

tr(�l l
0

)

(L� 1)
L∑
l=1

tr(�l l) +
∑
l<l

0

(�l � �l
0 )0(�l � �l

0 )

(16)

Note that,

(i) if tr(�l l
0 ) = 0 for all l 6= l

0

; then CCC = 0;

(ii) if �l = �l
0 and tr(�l l

0 ) = tr(�l l) = tr(�l
0

l
0 ) for all l 6= l

0

; then CCC = 1;

(iii) if �l = �l
0 and tr(��l l

0 ) = tr(�l l) = tr(�l
0

l
0 ) for all l 6= l

0

; then CCC = �1.

In general, (i) (�l��l
0 )0(�l��l

0 ) � 0; (ii) 2jtr(�l l
0 )j � tr(�l l)+tr(�l

0

l
0 ) for all l 6= l

0

:. Consequently,

�1 � CCC � 1:

Intra-rater Concordance Correlation Coe�cient (Intra-CCC)

In the previous subsection we have discussed CCC as a measure of agreement between two or more

raters, which can be rephrased as the inter-CCC. In the beginning of this section, we have discussed

the hierarchical design (Figure 1), which involves multiple measurements by a particular rater for the

same subject at the same time point. This motivates us to develop a measurement of agreement

within that rater. Note that when a subject and time point are �xed, the additional variability of the

measurement is due to the variability of the unexplained error �. We de�ne intra-CCC for rater l as

following,

CCCIntra
l =

2
∑
i ;j;k

Cov(yi jkl ; yi jk 0

l)

∑
i ;j;k

(V ar(yi jkl) + V ar(yi jk 0

l))
=

�2
�0l

+ �2
�0l

+
∑
j

j2�2
�1l

�2
�0l

+ �2
�0l

+
∑
j

j2�2
�1l

+ �2
e

(17)

Conceptually, the intra-CCC cannot be negative, which is supported by (17), as �2
e � 0, and hence

0 � CCCIntra
l � 1:

Estimation of Model Parameters

The expectation-maximization (EM) algorithm is used to estimate parameters of the proposed model.

In the E-step, with the initial values of the other parameters, we compute the "expected a posteriori"

or empirical Bayes (EB) estimates of the random e�ects as well as the conditional variances of the

random e�ects, given the data. In the M-step, given the current values of the random e�ects, we

obtain the maximum marginal likelihood (MML) (or restricted maximum marginal likelihood (REML))

estimates of the regression coe�cients, error variances, and the variances of the random e�ects. The

algorithm iterates between the EB and MML or REML estimates until convergence is achieved. In

addition, we followed the maximum marginal likelihood method to estimate parameters (Hedeker and

Gibbons, 2006[29]). Gauss quadrature is used for numerical integration, and the Newton-Raphson

method is used for the optimal solution.

4 Simulation Study

One simulation study is performed for both two and three raters scenario to evaluate the accuracy

and reliability of the parameter estimation algorithms. For each of the following scenarios, 10; 000

data sets were generated with 30 subjects having X-rays taken at three time-points, and each X-

ray subsequently reviewed twice by two/three di�erent raters. The following Models were used to

generate data.
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Two raters scenario

12 (6 for each rater) observations for each subject were generated according to the following model:

yi jkl = �0�(l=1) + �1�(l=1)j + �0i�(l=1) + �0i j)�(l=1)

+ �00�(l=2) + �01�(l=2)j + �00i�(l=2) + � 00i j)�(l=2) + �i jkl ;
(18)

where l = 1 denotes the �rst rater, and l = 2 denotes the second rater. Assumptions used to generate

data for �xed and random e�ects parameters are:

(i) Parameters �0; �
0

0; �1; �
0

1 are treated as �xed parameters.

(ii) �0i , �0j(i) and �i jkl are distributed independently.

(iii)

(
�0i
�00i

)
� N

([
0

0

]
;

[
�2
� ���0

���0 �2
�0

])
.

(iv)

(
�0i j
� 00i j

)
� N

([
0

0

]
;

[
�2
� ���0

���0 �2
�0

])
;

(v) �0i j 0 and � 00i j are independent, when j 0 6= j .

(vi) � � N(0; �2), and independent.

For this model, the inter-CCC under (10) or (16) is,

CCC =
2� 6(���0 + ���0)

6(�2
� + �2

�0 + �2
� + �2

�0) + jj(�0 � �00)16�6 +
(
1 2 3

)0


 [(�1 � �01)12�2]jj
2
2

; (19)

where jj:jj2 denotes L2 norm. Using (17),the intra-CCC for rater 1 is written as,

CCCIntra
1 =

�2
� + �2

�

�2
� + �2

� + �2
(20)

Note that, in this model we have not considered any random slope, so, the variance component of

the random slope has been omitted from both numerator and denominator of (17) to produce (20).

Intra-CCC for rater 2 can be expressed similarly.

Three raters scenario

18 (6 for each rater) observations were generated for each subject according to the following model:

yi jkl = (�0 + �1j + �0i + �0i j)�(l=1)

+ (�00 + �01j + �00i + � 00i j)�(l=2)

+ (�000 + �001 j + �000i + � 000i j)�(l=3) + �i jkl ;

(21)

where l = i means the ith rater for i = 1; 2; 3. Assumptions for generating �xed and random

parameters are:

(i) Parameters �0; �
0

0; �
00

0 ; �1; �
0

1; �
00

1 are treated as �xed parameters.

(ii) �0i , �0i j and �i jkl are distributed independently.
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(iii)



�0i
�00i
�000i


 � N





0

0

0


 ;



�2
� ���0 ���00

���0 �2
�0 ��0�00

���00 ��0�00 �2
�00




.

(iv)



�0i j
� 00i j
� 000i j


 � N





0

0

0


 ;



�2
� ���0 ���00

���0 �2
�0 ��0�00

���00 ��0�00 �2
�00




,

(v) �0i j1, �
0

0i j2
and � 000i j3 are mutually independent, when j1 6= j2 6= j3.

(vi) � � N(0; �2), and independent.

Using (16), inter-CCC for three raters can be written as,

CCC =
A

B
A = 2� 6(���0 + ���00 + ��0�00 + ���0 + ���00 + ��0�00)

B =
(
2� 6(�2

� + �2
�0 + �2

�00 + �2
� + �2

�0 + �2
�00)

+ jj(�0 � �00)16�6 +
(
1 2 3

)0


 [(�1 � �01)12�2]jj
2
2

+ jj(�0 � �000)16�6 +
(
1 2 3

)0


 [(�1 � �001)12�2]jj
2
2

+ jj(�00 � �000)16�6 +
(
1 2 3

)0


 [(�01 � �001)12�2]jj
2
2

)
:

(22)

Intra-CCC for all raters can be calculated similarly using the expression in (20).

For each simulated data set, �xed e�ect and random e�ect parameters are estimated according to

the estimation method described in the last section. The performance of this method is evaluated

using biases and root mean squared errors (RMSE).

Intra-CCC is used for measuring an agreement among multiple replications measured by a single rater.

Inter-CCC is used for measuring the agreement among di�erent raters. In the following tables, the

abbreviations are as follows: EST=estimate, STD=Standard Deviation, RMSE=root mean squared

error, Intral=1=Intra-CCC for rater 1, Intral=2=Intra-CCC for rater 2, Intral=3=Intra-CCC for rater

3, Inter2=Inter-CCC between two raters, Inter3=Inter-CCC between three raters.

Table 1 and Table 2 show simulated results when distributional parameters (two raters scenario)

are set close to the estimated parameters from the real data. These tables reveal that parameter

estimates are close to true values, biases are close to zero with a mixture of positive and negative

biases. Although STDs and RMSEs of �xed e�ects are reasonably satisfactory for smaller sample

sizes (e.g. 30), those of variance components are not encouraging. The corresponding CCCs are

estimated with high e�ciency. Theoretically these estimates are consistent, we observe that STDs

decrease for larger sample sizes (e.g. 50). We have performed another simulation study with sample

size 50 which shows a signi�cant decrease of STDs for example � STD of �2
� (Table 1) decreases

to .17 from .37, STD of �2
�

0 (Table 1) decreases to .13 from .27, STD of �2
�

00 (Table 2) decreases

to .07 from .12, STD of ��
0

�
00 (Table 2) decreases to .07 from .11. Taken together, this simulation

study demonstrates the accuracy and precision in estimates of the model parameters.
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Category Parameter True Value EST(STD) Bias RMSE

Fixed �0 3.65 3.6385 (0.2238) -0.0076 0.2240

�
0

0 4.11 4.0998 (0.1932) -0.0053 0.1933

�1 -0.10 -0.0861 (0.0552) 0.0090 0.0560

�
0

1 -0.16 -0.1502 (0.0545) 0.0077 0.0551

Random �2
� 1.36 1.3540 (0.3653) -0.0083 0.3654

variance �2
� 0.11 0.1115 (0.0354) 0.0001 0.0354

�2
�

0 0.97 0.9669 (0.2663) -0.0050 0.2663

�2
�

0 0.10 0.1211 (0.0354) 0.0211 0.0412

�2 0.16 0.1613 (0.0173) -0.0007 0.0173

���
0 1.12 1.1131 (0.3044) -0.0065 0.3045

���
0 0.09 0.0960 (0.0283) 0.0060 0.0289

CCC Intral=1 0.90 0.8951 (0.0284) -0.0059 0.0290

Intral=2 0.93 0.8640 (0.0358) -0.0664 0.0754

Inter 0.81 0.8014 (0.0434) -0.0107 0.0447

Table 1: Estimation of model parameters and computation of CCC for two raters scenario.

5 Analysis of Motivational Example Data

In this section, we would like to apply methods discussed in Section 3 to evaluate agreement between

di�erent raters. Back to the GAIT trial, subjects enrolled in the GAIT ancillary structural study met

the original GAIT inclusion criteria, summarized as being at least 40 years of age with clinical evidence

of painful OA in knee(s) for at least the immediate past six months and radiographic evidence of OA

as determined by having a Kellgren & Lawrence grade 2- or 3-rated radiograph of the index knee. Of

the 1583 original GAIT study participants, 662 were also in the structural study. Patients were asked

to continue follow-up even if they stopped taking their assigned treatment. The study treatments

were glucosamine hydrochloride (HCl) 500 mg three times daily, sodium chondroitin sulfate 400 mg

three times daily, both glucosamine and chondroitin sulfate as above, celecoxib 200 mg once daily or

placebo daily.

The metatarsophalangeal �lms were obtained as previously described, using the method of Buckland-

Wright on participants in the GAIT radiographic sub-study at baseline, at one year and two years or

until the end of the study.

Baseline analysis

The joint space width (JSW) at baseline of 281 participants was used to evaluate the agreement

between raters. The results in this section are based on only one reading by each rater. The

mean and standard deviation of the di�erence of measurements between two raters are presented to

provide information regarding the average magnitude of the di�erence. Inter-rater agreement between

readers is assessed statistically by an unconditional intra-class correlation (ICC). ICC is de�ned by

�u = �2
subject=(�

2
subject +�2

rater +�2
� ). The di�erences in readings between readers were also examined

using Bland-Altman plots to graphically investigate systematic di�erences in disagreement [Bland,

1986, 1993]. Disagreement in a Bland-Altman plot is being indicated by di�erences that fall within

the 95% con�dence limits of the mean di�erence. Table 3 shows that Raters 1 and 2 have higher

ICC and lower mean di�erence on JSW at baseline.
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Figure 3: Rater 1 vs Rater 2 Bland-Altman plot n=281 radiographs.

Figure 4: Rater 1 vs Computer Bland-Altman plot n=281 radiographs.
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Category Parameter True Value EST(STD) Bias RMSE

Fixed �0 3.75 3.7481 (0.3333) -0.0019 0.3333

�
0

0 4.11 4.1109 (0.3203) 0.0009 0.3202

�
00

0 4 3.9996 (0.2969) -0.0004 0.2969

�1 -0.10 -0.1003 (0.1504) -0.0003 0.1504

�
0

1 -0.16 -0.1612 (0.1451) -0.0012 0.1451

�
00

1 -0.12 -0.1204 (0.1330) -0.0004 0.1330

Random �2
� 1.30 1.2518 (0.2272) -0.0482 0.2323

variance �2
� 0.11 0.1459 (0.1309) 0.0359 0.1357

�2
�

0 1.20 1.1570 (0.2085) -0.0430 0.2129

�2
�

0 0.10 0.0958 (0.1222) -0.0042 0.1223

�2
�

00 1.00 0.9656 (0.1780) -0.0344 0.1813

�2
�

00 0.14 0.1214 (0.1186) -0.0186 0.1200

�2 0.16 0.1591 (0.0136) -0.0009 0.0136

���
0 1.12 1.0798 (0.2005) -0.0402 0.2045

���
00 1.00 0.9617 (0.1818) -0.0383 0.1858

��
0

�
00 1.00 0.9644 (0.1778) -0.0356 0.1813

���
0 0.08 0.0991 (0.1155) 0.0060 0.1157

���
00 0.07 0.1078 (0.1056) 0.0378 0.1122

��
0

�
00 0.05 0.0785 (0.1066) 0.0285 0.1103

CCC Intral=1 0.90 0.8961 (0.0174) -0.0039 0.0178

Intral=2 0.89 0.8885 (0.0185) -0.0015 0.0186

Intral=3 0.87 0.8746 (0.0207) 0.0046 0.0212

Inter3 0.76 0.7509 (0.0353) -0.0065 0.0359

Table 2: Estimation of model parameters and computation of CCC for three raters scenario.

Figure 5: Rater 2 vs Computer Bland-Altman plot n=281 radiographs.
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Bland-Altman plots for all evaluated �lms reveal that Rater 1 was the most reliable as most readings fall

within the two standard deviation boundary, whereas readings from Rater 2 are little more scattered,

and the Computer is the poorest of all. The plots (Figures 3-5) are based on one reading by each

rater at baseline.

ICC Mean di�erence 95% CI

Rater 1 vs Rater 2 0.90 -0.02 -0.08, 0.04

Rater 1 vs Computer 0.80 -0.20 -0.28, -0.12

Rater 2 vs Computer 0.83 -0.18 -0.26, -0.11

Table 3: ICC and its con�dence interval for human and computer: Joint Space Width n=281 radiographs.

Analysis for complete longitudinal data

Table 4 shows the Intra-CCC for each rater. Values of Intra-CCC by the mixed model suggest that

Rater 1 is the most reliable rater.

Intra-CCC Rater 1 Rater 2 Rater 3

0.9190 0.8778 0.8436

Table 4: Intra-CCC estimation for three raters.

Table 5 presents results of CCC between Raters 1 and 2, Raters 1 and 3, and Raters 2 and 3. We

use the inter-CCC to show the quantitative agreement level between two raters. CCC between the

second rater with the other two raters are relatively small. Also, we estimate CCC by three-level and

two-level mixed e�ects models. The estimates of �xed variables by the three-level model are almost

the same as those by the two-level mixed e�ects model, but the third level variance-covariance reduces

the role of the error variance, and increases the covariance between raters slightly. Therefore, we get

a higher CCC estimate by three-level models compared to two-level models. In fact, based on the

data structure as we have shown before, the three-level model captures di�erent levels of variance

and covariance, and the results are closer to the real data. Therefore, estimated CCCs based on

three-level models are better than corresponding CCCs from two-level models.

6 Discussion

We have developed statistical methodologies to measure agreement for multiple raters using

hierarchical longitudinal designs. These methods use covariance matrices and mean vectors of raters to

measure agreement. The methods can be extended to adjust the in�uence of covariates. In addition,

we use intra-CCC for measuring agreement within a rater. Intra-CCC is speci�cally important when an

existing manual system is going to be replaced by arti�cial intelligence. In this contest, we developed

a measure for agreement for all raters jointly.

We did not address the inferential aspect of the problem in this manuscript. Bhaumik et. al. [8]

constructed the generalized con�dence interval (GCI) for CCC utilizing a bivariate normal distribu-

tion of measurements, and also developed a large sample based con�dence interval (LSCI). They

established satisfactory performance of GCI by providing the desired coverage probability (CP) via

simulation. The derivation of the distribution of CCC for our hierarchical design is intractable. Thus
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Rater 1 & 2

Category Parameters Three-level model Two-level model

Est(Std) Est(Std)

Fixed �0 3.6461 (0.2333) 3.6461 (0.2304)

�
0

0
3.3876 (0.2342) 3.3876 (0.2339)

�1 -0.0952 (0.0723) -0.0952 (0.0623)

�
0

1
-0.0632 (0.0634) -0.0632 (0.0623)

Random �2

�
1.3252 (0.3818) 1.3514 (0.3813)

variance �
��

0 1.0882 (0.3511) 1.1596 (0.3509)

�2

�
0 1.3964 (0.3940) 1.3991 (0.3940)

�2

�
0.0706 (0.0616)

�
��

0 0.2142 (0.0374)

�2

�
0 0.0000 (.)

�2 0.4659 (0.0434) 0.4498 (0.0375)

CCC Inter 0.6900 0.6266

Rater 1 & 3

Fixed �0 3.6461 (0.2291) 3.6461 (0.2264)

�
0

0
4.1051 (0.1955) 4.1051 (0.1935)

�1 -0.0952 (0.0576) -0.0952 (0.0454)

�
0

1
-0.1579 (0.0532) -0.1579 (0.0454)

Random �2

�
1.3623 (0.3814) 1.3866 (0.3812)

variance �
��

0 1.1196 (0.3161) 1.1538 (0.3160)

�2

�
0 0.9719 (0.2746) 0.9868 (0.2744)

�2

�
0.1114 (0.0371)

�
��

0 0.1025 (0.0272)

�2

�
0 0.0831 (0.0319)

�2 0.1620 (0.0174) 0.2390 (0.0199)

CCC Inter 0.8121 0.7670

Rater 2 & 3

Fixed �0 3.3876 (0.2345) 3.3876 (0.2340)

�
0

0
4.1051 (0.1989) 4.1051 (0.1983)

�1 -0.0632 (0.0645) -0.0632 (0.0628)

�
0

1
-0.1579 (0.0645) -0.1579 (0.0628)

Random �2

�
1.3935 (0.3940) 1.3979 (0.3940)

variance �
��

0 0.9504 (0.3002) 1.0034 (0.3000)

�2

�
0 0.9461 (0.2745) 0.9504 (0.2744)

�2

�
0.0000 (.)

�
��

0 0.1589 (0.0282)

�2

�
0 0.0000 (.)

�2 0.4832 (0.0439) 0.4572 (0.0381)

CCC Inter 0.6006 0.5497

Rater 1, 2 & 3

CCC Inter (Three raters) 0.6593 0.6388

Table 5: Inter-CCC estimation for three-level and two-level models
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testing of any hypothesis related to CCC will be based on large sample (Chaudhary 2017[20, 19]). It

should be noted that there is no gold standard for CCC in the literature[6, 15, 13, 27, 25], neither in

general nor particularly for this problem. It is worth constructing a con�dence interval for CCC using

bootstrapping or some other approach for small samples. This can be a future direction of research

in this area.

Note: Data sharing is not applicable to this article as no new data were created or analyzed in this

study.
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Abstract
Many practical data sets are quite heterogeneous in terms of the observed outcome variables, and it may not be
possible to model this heterogeneity based on the obtained data. Various approaches, e.g., based on the latent
variables, have been proposed for these kind of problems. This paper presents a selection of methods based on the
so-called finite mixtures. Of particular interest are the various mixture regression techniques and their extensions
with applications to interesting real-world modelling problems.
Keywords: Finite mixtures, Generalized linear model, Mixture normal distribution, Multivariate mixtures, Number
of mixture components, Trajectory analysis.

1 Introduction
In this article, we introduce and illustrate basic finite mixture modelling techniques for univariate and
multivariate data. In addition to traditional distribution and regression modelling [4, 15, 21], multivariate
mixtures [28] and mixture based longitudinal analysis (so-called trajectory analysis (TA) see e.g. [20], [16],
[19] and [9]) in one-dimensional and multidimensional case are also considered. For further developments
of the basic TA model see [23] and [34] and for the growth curve model [26, 10] see [25]. As theoretical
developments and details are provided elsewhere, our focus here is to demonstrate the usefulness of these
techniques on real-world applications.

The structure of the article is as follows. General finite mixtures are discussed and illustrated in Section
2, with Section 3 covering and demonstrating finite mixtures in regression modelling. Multivariate mixtures
are the focus of Section 4, with multivariate normal mixtures in Section 4 and mixtures of longitudinal
data with extensions in Section 4. Our final comments are given in Section 5.

2 Finite Mixtures
In this section, we introduce and illustrate basic finite mixtures of normal distributions. To this end, let
y1, . . . , yn, be n independent realizations of random variable Y . These observations are assumed to have
arisen from K sub-populations. Let Zi = k if the ith observation belongs to the sub-population k with
the probability πk = P (Zi = k), such that ∑K

k=1 πk = 1 and πk > 0. The conditional density of yi

given Zi = k is denoted by fk(yi; θk), and these densities are typically assumed to arise from the same
parametric family with parameters θk for k = 1, . . . , K. The unconditional density for the whole sample

© 2022 Author(s). (https://www.thegsa.in/).
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is then
f(yi; ξ) =

K∑

k=1
πkfk(yi; θk), i = 1, . . . , n,

where ξ = (π1, . . . , πK , θ′
1, . . . , θ′

K)′. In this setting, the sub-populations are considered as unknown
latent variables that need to be estimated together with the model parameters θ1, . . . , θK of respective
sub-population density functions.

Mixture of Normal Distributions
Mixture of normal (MN) distributions and their extensions play an important role in the field of finite
mixtures, see the discussions in [31], [15] and [21], for example. In [15] it is shown how MN can
model different distribution forms, including asymmetric and skewed distributions; see also Example 1
for illustration. It is underscored that almost any distribution form could be approximated arbitrarily close
with a suitable choice of a MN. Although many alternative distribution forms could also be used, we
highlight that the use of MN can be justified for several reasons. The theory of the normal distribution
is very well established and many computer programs have been developed for the analyzes. Further, as
noted above, they provide a moderate approximation to many situations that may further be improved by
a suitable transformation of the observed data [7, 15].

Parameter estimation is generally achieved using the method of maximum likelihood, and we follow
this approach here. Under this setting, the aim is to find an estimate ξ̂ which maximizes the log likelihood
function

l(ξ; y1, . . . , yn) =
n∑

i=1
log

{
K∑

k=1
πkfk(yi; θk)

}
.

Once the model parameters ξ are estimated, each observation is then placed into a suitable sub-population
on the basis of posterior probability

pik(ξ̂, yi) = π̂kfk(yi; θ̂k)
∑K

k=1 π̂kfk(yi; θ̂k)
= π̂kfk(yi; θ̂k)

f(yi; ξ̂)

by using the highest pik(ξ̂, yi) with k = 1, . . . , K. For maximization of the log likelihood function
l(ξ; y1, . . . , yn) the EM algorithm [3] is often employed, especially when the assumed response variable is
chosen from the exponential family of distributions. Implementations of the EM algorithm for mixtures are
usually based on the joint distribution of the observed data and cluster memberships information, where
cluster memberships are considered as missing data. However, our experience in real data analysis is such
that for slightly more complex models, the associated optimization burden is rather unwieldy and the
algorithm does not necessarily converge with all the desired number of mixtures K. We also underscore
that the runs may need to be repeated with several different initial values to ensure that the algorithm is
converged to the maximum point of the likelihood function.

Example 1. The data used for this example is part of the growth data of 4223 children collected in
Finland as described in [32] and [24]. For this example we focus on the 1995 birth cohort. For this cohort,
we used all male’s 347 weight and height measurements at the age of 15 years, and formed the chosen
(derived) response variable Body Mass Index (BMI),

bmi = weight/height2.

Here weight was measured in kilograms and height in meters. This variable is often considered as an
important measure when assessing overweight or obesity of adult population. Discussion of the use of
BMI for adolescents and children is given in [6].
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Figure 1: Density plot of BMI at the age of 15 years for boys (n = 347) and densities of the fitted sub-populations
(red color for population 1 and blue color for population 2).

The density plot of bmi variable is shown in Figure 1. When determining the appropriate number
k = 1, . . . , 5 of mixture of normal components, we use the BIC criterion, and obtain the respective values:
BIC(1) = 2003.0, BIC(2) = 1905.7, BIC(3) = 1915.7, BIC(4) = 1931.4 and BIC(5) = 1944.3.

On that basis the appropriate number of mixture components is K = 2 and the associated parameter
estimates are

π̂1 = 0.72, µ̂1 = 19.54, σ̂2
1 = 4.69, π̂2 = 0.28, µ̂2 = 25.72 and σ̂2

2 = 25.27.

Clearly, the high values µ̂2 = 25.72 and σ̂2
2 = 25.27 in the second sub-population indicate that some part

of the males in this sub-population have relatively high mean but that this group is quite disperse. We
also point out that the right tail of the density function of the first sub-population is very close to the
limit (25 kg/m2) of overweight or mild obesity for the adult population (Figure 1).

3 Mixture Regression
Whereas the previous section demonstrates mixture modelling of the observed density, we next consider
finite mixtures in the context of regression modelling. The generalized mixture regression model can be
formulated as

f(yi; ξ) =
K∑

k=1
πk(zi, αk)fk(yi; θki),

where g(µki) = x′
iβk, µki = E(yi|Zi = k), g is a monotonic and differentiable link function and

πk(zi, αk) follows a multinomial logit model with (possible) concomitant variables zi and parameters αk.
Then essentially the densities fk and proportions πk can have separate models using variables xi and

153



Some Applications of Mixture Regression Modelling Techniques Nummi et al.

concomitant variables zi. The following example considers modelling in a survey data using mixtures of
Poisson distribution.

Example 2 (Quality of Work Life: Stress). As described in [29], the Quality of Working Life Survey is
a nationwide survey conducted by Statistics Finland in the years 1977, 1984, 1990, 1997, 2003, 2008,
2013 and 2018. The survey examines the physical, mental and social working environment of employees
in addition to collecting information on work, labor market status, working conditions, reconciling work
and family life, occupational health and factors at the work organization level.

In this example our focus is on stress examination in 1984 (n=4362), 1990 (n=4018), 1997 (n=2945),
2003 (n=4097), 2008 (n=4387), 2013 (n=4859) and 2018 (n=4094), where the numbers in parentheses
are the corresponding sample sizes. In our study stress is measured by Stresscore which is the sum of
7 individual stress indicator variables each measured on five-point Likert scale. Three variables assess
functional somatic symptoms (Headache; Palpitations or Irregular heartbeat; Stomach upset) and four
variables (Fatigue, reluctance or inactivity; Difficulty getting to sleep or waking up at night; Tension,
nervousness, or irritability; Feeling that everything is beyond power) measure psychological distress. In
the quality of work life studies in Finland Stresscore has been used as a measure of stress, the higher the
value of the score, the more stressed the person is. Related information on stress issues is given in [12].

The observed distribution of Stresscore is discrete, highly right-skewed and heterogeneous. This makes
further investigation of Stresscore using statistical models quite challenging. The approach we take here
is to approximate the distribution of Stresscore by a mixture of Poisson distributions. The mixture of
Poisson distributions can be written as

f(yi; ξ) =
K∑

k=1
πkfk(yi; µki)

with
fk(yi; µki) = exp(−µki)µyi

ki/yi!

for k = 1, . . . , K and i = 1, . . . , n. It is quite easily shown that

E(yi) =
K∑

k=1
πkµki and Var(yi) = E(yi) + νij,

where

νij =
K∑

k=1
πkµ2

ki −
(

K∑

k=1
πkµki

)2

,

which equals zero if and only if µ1i = µ2i = · · · = µKi. As such, finite mixtures is one key technique to
handle over-dispersion among the observed data.

Our purpose is to perform a model-based clustering such that more detailed statistical analysis can be
successfully performed in sub-populations. Due to changes in working life (e.g. digitalization, globalization
or increase in part-time employment), it can be argued that working life stress may have changed (and
perhaps increased) over time. Although other variables, such as, gender or employment sector may also be
connected with stress measurements, but since their associations may be more nuanced, we have excluded
these variables here from our example. For the Stresscores we tested the simple clustering model

log(µki) = x′
iβk, i = 1, . . . , n,

where x′
i = (1, yeari), with k = 1, 2, 3, 4. The following BIC(k) values were obtained: BIC(1) =

165547.7, BIC(2) = 159173.5, BIC(3) = 159204.2 and BIC(4) = 159235.0, respectively. The
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Figure 2: Smoothed mean Stresscore as a function of time in two sub-populations, where estimated proportions are
π̂1 = 0.13 (High stress group) and π̂2 = 0.87 (Low stress group).

minimum BIC(2) = 159173.5 indicates that two different sub-populations are identified here. The
estimated mixture proportions are then π̂1 = 0.13 and π̂2 = 0.87.

From the Figure 2 we note that both the magnitude and time-patterns of stress seem to be quite
different for these two groups. Therefore as such, they are not directly comparable with each other with
the note that they have been rising since at least 2005. In the figure, the groups have been aptly named
as (k = 1, High stress group) and (k = 2, Low stress group). As highlighted above, the overall stress
levels in the left panel are higher than those on the right. In terms of the overall patterns, both panels
are generally increasing but with dips in the left panel around 2006 and in the right panel around 1992.

4 Mixtures of Multivariate Data
Mixture of Multivariate Normal Distributions
In the mixture of multivariate normal (MMN) distribution settings, the density of each p-dimensional yi

can be written as
f(yi; ξ) =

K∑

k=1
πkfk(yi; θk), i = 1, . . . , n,

where
fk(yi; θk) = (2π)−p/2|Σk|−1/2 exp

(
−1

2(yi − µk)′Σ−1
k (yi − µk)

)
,

µk is the mean vector and Σk is the variance-covariance matrix for the kth mixture. In the most general
case µk and Σk are the unstructured mean and covariance matrices. However, often some more parsimo-
nious structures or models are imposed either on µk or on Σk or on both.
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Variable G1 G2 G3 G4 G5 G6

Working life (yrs.) 30.7 10.7 24.3 28.5 5.9 1.4
Age at ret. (yrs.) 55.5 42.2 59.8 58.5 57.2 49.6
Sickness (days) 168 226 173 84 259 165
Wage (Eur.) 2941 1607 1958 2495 389 17
Pension (Eur.) 1569 793 1016 658 216 17

Table 1: Multivariate mixture normal mean estimates for disability retirees.

Example 3 (Predictors of disability retirement). The comprehensive administrative registers of Finnish
statutory earnings-related pension system provides data to study disability pension retirees via multivariate
mixture framework. Our study-design consists of the following five continuous variables: the amount of
statutory disability pension (in Euros/month), the pre-retirement wage earnings (in Euros/month), the
length of working life at the end of 2016 (in years since age 18), the total number of long-term sickness
benefit days in 2005–2017, and the age at retirement. The actual data consists of a random sample of
n = 4160 public sector disability pension retirees (in 2017) in cohorts born over period 1954–2000.

In our analysis Σk is modelled using the eigenvalue decomposition as follows (see [28])

Σk = ckT kΛ∗kT ′
k,

where T k is a matrix of eigenvectors, Λ∗k is a diagonal matrix of scaled eigenvalues and ck is the associated
scaling constant. In our larger sample, the interpretation of identified clusters is somewhat cumbersome in
practice and, on the other hand, some groups may become so small that they have no practical significance.
As such, based on our subjective knowledge and experience, we have chosen six groups (denoted G1-G6
here) with respective mixing proportions: π̂1 = 0.1245, π̂2 = 0.2558, π̂3 = 0.2095, π̂4 = 0.2131, π̂5 =
0.1184 and π̂6 = 0.0775. Cluster mean estimates are presented in Table 1.

The results indicate quite meaningful groups, which are in line with real-life experience. As captured
in groups G1, G3 and G4, there is a high share (55%) of disability retirees with long and stable working
lives cut short, yet the pension system yields decent level of pension. There is a relatively large group G5
(11.8%) and smallest group G6 (7.7%) with weak attachment to public sector employment, and the final
pension accrual remains understandably quite low. In practice these groups consists of people with private
sector employment background, and they get pension also from private sector pension providers. The
largest group, G2 (25.6%) shows that pension rules together with strong labor market attachment yields
moderate pension security, although drawn at quite young age after long sickness periods (226 days).
The group G1 with less than 12.5% of the total, underscores the strength of the earnings-related pension
system: this group receives highest pension security following long career in the public sector.

Note that early disability retirement, with low wage does not automatically indicate low pension income
(cf. G2), because pension system rules compensate for non-completed expected career. Furthermore, the
disability pensions indicated by Table 1 are not the final pension, as small earnings-related pension (cf.
G2, G4, G5 and G6) is compensated by national pension, which is an universal benefit.

Mixtures of Longitudinal Data
Longitudinal data are typically correlated and also lend themselves to mixture modelling techniques, which
we address here - first modelling a single outcome and then several outcome variables.
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Trajectory Analysis

Understanding and modelling heterogeneity of longitudinal data has been of lively interest to researchers
in various applied fields for several decades. In this case yi consists of longitudinal sequence of p

measurements of the ith individual. Here we focus on the normal general linear model, but also other
members of the exponential family are possible. As introduced and coined in [20] and [16], these are
so-called trajectory analyses; additional details about trajectory modelling approaches are given in [17],
[5] and [22]. In the following it is assumed that

µk = X iβk with Σk = σ2
kI, k = 1, . . . , K,

where X i may depend on one or several time-dependent variables. Note that this assumed within-cluster
independence does not imply independence at the sample level. In the following two subsections, we apply
this basic model and extend it also for the analysis of multivariate longitudinal data.

Let yi = (yi1 , . . . , yiT
)′, represent a sequence of repeated measurements on an individual i over T , and

let fi(yi; Xi, ξ) denote the marginal probability distribution of yi with potential time-dependent covariates
Xi. It is assumed that fi(yi; Xi, ξ) follows a mixture of K densities

fi(yi; Xi, ξ) =
K∑

k=1
πkfik(yi; Xi, θk),

K∑

k=1
πk = 1 with πk > 0,

where πk is the probability of belonging to unobserved sub-group k, fik(yi; Xi, θk) is the density for the
kth sub-group and θk is a vector of component-specific parameters for density. The overall likelihood
function is then

L(ξ) =
n∏

i=1
fi(yi|Xi, ξ) =

n∏

i=1

K∑

k=1
πkfik(yi|Xi, θk),

where n is the sample size.

Example 4 (Wage trajectories). Administrative registers of Finnish statutory pension system provide data
from pensionable wage earnings of private and public sector employees and of self-employed workers. In
addition to earnings, there is also background information including gender, socioeconomic groups and
uses of several social security benefits. For this study a random sample (n = 750) of individuals was
drawn from the nation-wide registers. The sample consists of cohort born in 1960, for which wages and
social security benefits are collected annually for the 11-year period from 2010 to 2020.

The observed distribution of wage earnings (yearly wages) has both excess number of zero or near
zero observations and it is highly right-skewed. Our approach is to approximate the wage distribution
by a mixture of normal distributions. For the log wage earnings, we fitted a simple cubic polynomial
cluster-specific model

β0k + β1kt + β2kt2 + β3kt3,

where t is the age of a person. After fitting the model for k = 1, . . . , 5 latent groups we obtained the
following BIC values: BIC(2) = 17805.6, BIC(3) = 17288.2, BIC(4) = 16802.8 and BIC(5) =
16460.9, respectively. The BIC criterion supports the model selection with up to five mixture components
k, which was the maximum number of tested components. However, with five components the group sizes
would lead to the solution that is not very interesting from a practical point of view. As such, and in the
line with our previous comments, we select the three-component solution; this in turn yields reasonable
group sizes, over 50 individuals per group. The estimated mixture proportions for the three groups were
then π̂1 = 0.0749, π̂2 = 0.8508 and π̂3 = 0.0742, respectively. From Figure 3 we can see the estimated
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Figure 3: Mean wage earnings trajectories as a function of age in three sub-populations, where estimated proportions
are: π̂1 = 0.0749 (Low wages), π̂2 = 0.8508 (Stable wages) and π̂3 = 0.0742 (Falling wages).

wage earnings trajectory models. The groups were given heuristic names Low wages (k = 1), Stable
wages (k = 2) and Falling wages (k = 3).

We can conclude that there is a large group (85.1%) with "hump-shaped wages" and solid labor market
attachment at mid-life course. Other groups indicate a more fragile labor market attachment and falling
wages. Cluster membership information also gives further possibilities for more detailed statistical analysis
of explanatory factors (e.g. using multinomial logistic regression) behind the observed cluster composition
with socioeconomic factors, for example. Simple statistical analysis with gender showed that Low wages
group and Falling wages group consists mainly of women (70%), while the respective share in Stable wages
group is 80%.

Multivariate Trajectory Analysis

An interesting extension of the basic TA is the mixture analysis where it is possible to describe the
interrelationship of several multiple outcomes followed over time. The multivariate model can be written
as follows. Let yi = (y′

i1, . . . , y′
iJ)′, where yij represent a sequence of measurements of the jth independent

outcome on an individual i over T , and let hij(yij|Xij) denote the marginal probability distribution of the
outcome yij with possible time dependent covariates Xij. The marginal mixture distribution of yi can
now be written as

fi(yi|Xi) =
K∑

k=1
πk




J∏

j=1
hijk(yij|Xij)


 ,

K∑

k=1
πk = 1 with πk > 0,
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where πk is the probability of belonging to sub-group k, hijk(yij|Xij) is the density of jth outcome for
the kth sub-group and X i = {X i1, . . . , X iJ}. Note that outcomes can now follow different distributions
and explanatory variables do not need to be the same for all the outcomes. Applications of multivariate
trajectory analysis can be found in [19], [8], [11], [27] and [2], for example.

Example 5 (Wage and social security benefit trajectories). As shown in Example 4 three mixture
components can be identified from longitudinal wage distribution. In this example we extend the analysis
by modelling wage earnings and social security benefit days jointly. Social security benefits include
the following benefits: long-term unemployment spells, sickness spells, occupational rehabilitation and
accident-based spells. For this example, the same small sample (n = 750) of individuals born in 1960 is
used as in Example 3. The observed distribution of benefit days (yearly days) has both excess number
of zeros and is highly left-skewed. Our approach is to approximate the distribution of wage earnings and
benefit days by a multivariate mixture of (zero-truncated) normal distributions. The log-transformation is
used on the yearly wages as in Example 3. From Table 2 we can see the distribution of the benefit days
used in the analysis.

Gender Count 50% 75% 95% 99% Mean SD
Men 1804 0 3 206 265 29 67
Women 6446 0 21 201 262 31 65
Total 8250 0 16 202 264 31 66

Table 2: Summary of benefit days over years 2010–2020 (Counts, quantiles, means and standard deviations).

For analyzing both log wage earnings and benefit days (yearly total), we tested the third degree
clustering model:

β0jk + β1jkt + β2jkt2 + β3jkt3

for variable j and cluster k in t (age). Testing the number of clusters with BIC (SAS, proc traj) shows
that BIC(2) = −37388.1, BIC(3) = −36720.2, BIC(4) = −36218.4 and BIC(5) = −35912.4,
respectively. The BIC criterion supports the model with up to five mixture components. In order to
compare the results with the Example 4 we fixed the number of clusters as three. The estimated mixture
proportions for the three groups are now π̂1 = 0.0891, π̂2 = 0.7862 and π̂3 = 0.1245. From Figure 4 we
can see the estimated wage trajectories (left) and benefit trajectories (right) in the sample. The groups
were given heuristic names: Weak labor attachment (k = 1), Stable labor attachment (k = 2) and Falling
wages and unemployment (k = 3).

It is seen in Figure 4 that with a Stable labor attachment, the number of benefit day is the lowest,
as expected. Falling wages and unemployment seems to be associated with highly increasing benefit days
with age. In a Weak labor attachment, the number of benefit days would even appear to decrease with
age, which may be a little surprising. When compared to clusters in Example 4 a slightly different picture
is also drawn of the cluster proportions. Especially the Stable labor attachment appears to be become
smaller due to increasing number of benefit days at the end of the career (0.8508 versus 0.7862). The
share of Falling wages and unemployment attachment appears to become larger when number of benefit
days is also taken into account (0.0749 versus 0.1245).

More detailed analysis of benefit day indicate that 81% of the sample draw sickness benefits. Highest
share locates in Falling wages and unemployment group (90%) with average sum of 317 days. In Weak
labor attachment group the share is 84% and the average duration 325 days. Unemployment is a persistent
problem, but less common as 33% of the sample faces unemployment spells at mid-life course. Highest
share locates in Falling wages and unemployment group (83%) with average sum of 757 days. In Weak
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Figure 4: Mean wage earnings and social security benefits trajectories as a function of age in three sub-populations,
where estimated proportions are: π̂1 = 0.0891 (Weak labor attachment), π̂2 = 0.7862 (Stable labor attachment)
and π̂3 = 0.1245 (Falling wages and unemployment).

labor attachment group the share is 60% and the average duration 672 days. In Stable labor attachment
group only 22% face unemployment spells and the duration is shorter (172 days) compared to other groups
with a more fragile labor market attachment.

Dual Trajectory Analysis: A Conditional Model

The dual trajectory model is an extension to univariate model, outlined by [18], [16] and [9], which permits
us to study the interrelationship between two related longitudinal outcomes in a conditional setup. The
approach visualizes the multidimensional associations between the outcomes and it has been applied, for
example, in medical sciences [1, 14, 33]. For more discussion on trajectory modelling approaches, see also
[2].

The likelihood function of the conditional model stems from the assumptions of univariate trajectory
model. The dual modelling includes two conceptual approaches: general model and constrained model
to link two correlated trajectory outcomes. The general model includes the assumption that the two
outcomes have the same number of mixture components, whereas the constrained model allows different
number of components. Let y1 = (y11, y12, y13, . . . , y1T1) and y2 = (y21, y22, y23, . . . , y2T2) denote the
two longitudinal outcomes to be modelled. As the conditional independence assumption (given group
membership) of univariate trajectory model is maintained, the joint conditional distributions of the outcome
vectors y1 and y2 can be defined as

fk(y1) =
T1∏

t=1
fk

t (y1t)

and
hk(y2) =

T2∏

t=1
hk

t (y2t),

where fk
t (·) and hk

t (·) are the respective PDFs (probability density functions) or PMFs (probability mass
functions). Note that the two outcomes can follow different distributions, thus, for example, fk

t (·) can be
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a a normal PDF and hk
t (·) can be a Poisson PMF.

Assume that the outcome vectors y1 and y2 are correlated but they are independently distributed
conditional on the memberships in trajectory groups. Then the unconditional likelihood function for the
general model is of the form

L =
J∑

j=1

K∑

k=1
πjkf j(y1)hk(y2),

where πjk is the joint probability of membership in trajectory group j for y1 and trajectory group k for
y2. See [16], for example.

The general model assumes J unique mixture components and developmental trajectories which
describe the courses of Y1 and Y2. Both outcomes should be independently distributed. Therefore the
likelihood function for the constrained model weighted by πj is defined as

L =
J∑

j=1
πjf

j(y1)hj(y2),

where πj is the shared proportion of both Y1 and Y2 (See also Section 4.2.2). Using similar data and
measures as in Example 5, it is possible to illustrate the practical idea of dual trajectory modelling.

Example 6 (Dual analysis of Wages and Benefits). The example data includes two distinct, but related
outcomes, which can be used to demonstrate the above mentioned constrained model. The analysis
proceeds in two stages. In the first step a univariate trajectory analysis assuming zero-truncated normal
distribution is done separately on both outcomes: wage earnings and benefit days. The second step
includes counting the optimal group-solution in the joint model using the parameters (including group
shares) of the univariate analyzes as starting values for the joint analysis.

For the univariate analysis of both wage earnings and benefit days, we used the simple clustering
model:

x′
iβjk = β0jk + β1jkt.

A three-group solution for wages and a two-group solution for benefit days yields a tractable model, which
can be used in the joint model. Although the group-specific clustering model is simpler than in Examples 4
and 5, nearly identical trajectory groups (cf. Figure 4), with similar substantial implications can be revealed
with the joint model. The group shares are different compared to multivariate trajectory model. The mixing
probabilities for wage are: π̂1 = 0.0629 (Low wages), π̂2 = 0.8596 (Stable wages) and π̂3 = 0.0774
(Falling wages). The corresponding shares for benefit days are: π̂1 = 0.7638 (Slow increasing) and
π̂2 = 0.2361 (High). The probabilities of group membership for univariate model and dual model can
be found from Table 3. The interrelationship across trajectory groups can be presented in several ways
by showing the conditional probabilities of the outcomes. Table 4 shows one way to illustrate the joint
probabilities across groups.

The benefit group-specific results indicate that there is a large group with over 95 per cent of Slow
increasing group associated with Stable wages trajectory. Nearly 4% of Slow increasing group associated
with Low wages trajectory. High use of social security benefits is more evenly associated to the three
wage trajectories. About 56% of High benefit group is associated to Stable wage trajectory group. The
respective shares for Falling wages trajectory and Low wages trajectory are 29% and 15%.

5 Concluding Remarks
It is demonstrated that methodologies presented here are quite useful in a wide variety of practical analyzes.
The presented methodology here is based mainly on the normal distribution with linear modelling. However,
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Wage group 1-Low wages 2-Stable wages 3-Falling wages
Univariate model 0.0617 0.8612 0.0769
Dual model 0.0629 0.8596 0.0774
Benefit group 1-Slow increasing 2-High
Univariate model 0.7410 0.2589
Dual model 0.7638 0.2361

Table 3: Probabilities of group membership from univariate model and dual model.

Benefit group
Wage group 1-Slow increasing 2-High
1-Low wages 0.036 0.151
2-Stable wages 0.952 0.559
3-Falling wages 0.012 0.290
Total 1.00 1.00

Table 4: Probability of wage group j conditional on benefit group k (πj|k).

these methods can be generalized in many respects by utilizing, for example, different distribution forms,
e.g. [13], or by using non-linear, e.g. [30] or non-parametric regression modelling, e.g. [23], techniques.
Modelling and revealing the relative proportions of sub-populations also offers interesting possibilities in
different application situations.
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